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Summary In this paper, we present some parallel performance results for a 3D simulator of
coupled deformation, fluid flow and heat transfer in sedimentary basins. The model parameters are
derived from an industry simulator, with realistic material properties and complex irregular grids
of up to 1.5 million nodes with 7.3 million degrees of freedom. We have performed parallelisation
on the linear algebra level using the ML algebraic multigrid preconditioner with iterative methods
in the Diffpack finite element framework. Implementation and speedup results are presented.

Introduction

Sedimentary basins are formed over millions of years, as sediments are deposited in layers of
different composition. The current layout of the basin thus shows a history of geological events
during its formation. Understanding this history is of general interest to geoscientists, and the
underlying physical processes are of great importance to understand the maturation and primary
migration of hydrocarbons into oil and gas reservoirs.

Analysis and mathematical modelling of physical processes taking place in sedimentary basins
are complicated tasks. Due to the complexity of the governing partial differential equations
(PDEs) and the initial and boundary conditions, analytical solutions of realistic problems gen-
erally do not exist. Therefore, numerical solution techniques must be applied. The high spatial
variability of properties such as permeability and porosity in typical basins means that high
resolution of the computational grids is required. The fact that the PDEs are coupled leads to
further computational challenges. In addition, the systems must be solved iteratively for the
nonlinear couplings. In [7], such a coupled model was proposed and applied to a case of hori-
zontal magma intrusions in a sedimentary succession, using finite element methods on a two-
dimensional domain. We have reimplemented and extended this model to cover three dimen-
sional (3D) problems. The number of unknowns required in real 3D cases is very large, which
means that parallelisation of the code is necessary. Here we present a method for parallelisation
of the model.

We have adopted a minimally invasive method of parallelisation at the linear algebra level,
which is detailed in later sections. We present scalability results for the parallel solver, pre-
conditioned with an algebraic multigrid (AMG) preconditioner. These results show that this
approach provides good speedup for the range of tested clusters.

The research presented in this paper has been financially supported by Norsk Hydro.



The geomechanical model

Based on certain fundamental physical principles, as well as the continuum hypothesis, a system
of three coupled PDEs is derived: One for the fluid (pore) pressurep, one for the displacement
field u of the porous medium, and one for the temperatureT . Additional mathematical equa-
tions, e.g., constitutive relations and boundary conditions, are introduced to fully specify the
problem. The governing equations are as follows.

Equation for the fluid pressure

Using the principle of conservation of mass for the fluid and solid phases, and following Darcy’s
law in which the effect of thermal expansion of the fluid phase is included, we obtain

S
∂p

∂t
= ∇ · (Λ∇p)−∇ · (Λρf(1− βf(T − T0))g). (1)

HereS is the storage coefficient,Λ is the mobility of the flow, andρf is the fluid density. In
the temperature term,βf is the thermal expansion coefficient of the fluid,T0 is a reference
temperature, andg is the acceleration of gravity. It should be remarked that the fluid flow in
deformable porous media is considered as a quasi-static Biot system, see for example [11].

Equation for the temperature

Based on the principle of conservation of energy, or the first law of thermodynamics, the fol-
lowing advection-diffusion equation for the temperature field is introduced:

C
∂T

∂t
+ ρfCfvD ·∇T = ∇ · (κ∇T ), (2)

whereC = (φρfCf + (1−φ)ρsCs) is the bulk heat capacity,Cf andCs are the specific heats for
the fluid and solid phase,ρf andρs are fluid and solid densities,φ is the porosity, andκ is the
thermal conductivity. The Darcy velocityvD contains a pressure term (a driving force, coupling
it to (1)) as well as a temperature term (buoyancy, which makes it nonlinear),

vD = φvf = −Λ(∇p− ρf(1− βf(T − T0))g). (3)

Equation for the deformation

After neglecting inertia (or acceleration) terms, the principle of conservation of momentum for
the sedimentary basin leads to the equilibrium equation

∇ · σ + ρg = 0, (4)

whereσ is the total stress tensor. While the deformations of the sediments are to a large degree
plastic, we assume that on a short time scale with small deformations a more computationally
efficient elastic model is sufficiently accurate. Applying the assumption of isotropic linear elas-
tic behaviour of the porous medium, the stress components are related to the displacement field
through Hooke’s law with a linear thermoelastic term,

σ = (λ∇ · u− αp− βs(3λ + 2µ)(T − T0)) I + 2µε. (5)

Here,λ andµ are the Laḿe material constants, andα is the Biot factor (approaching unity for
fully saturated flows). The elastic deformation tensorε is the symmetricised gradient of the
displacement field,ε = (∇u + (∇u)T)/2.



Implementation

The present model was originally implemented by Kjeldstad et al. [7] for two-dimensional
problems. To incorporate 3D calculations, we did a new implementation of the simulator with
emphasis on generality and extensibility. In parallel with the reimplementation of the solver, we
have developed software to import models from Petromod, which is one of the leading basin
simulation software packages in the oil and gas industry [10]. This has allowed us to use realistic
geometries, initial conditions and material parameters for our models, and to some extent also
to verify our results.

The serial implementation of the solver uses a standard finite element method for the coupled
equations in the Diffpack framework. Details on the handling of complicated initial and bound-
ary conditions are found in [7] and [9].

The coupled equations generate a system of equations with five degrees of freedom per node (p,
T andu), and it is not uncommon to do simulations on a grid of several million nodes. At these
sizes, just the memory accesses associated with one matrix-vector product — the core of any
iterative solver — can take a second or more on a single computer.1 Thus, in order to achieve
acceptable performance, parallelisation is required.

Parallelising the solver

Parallelisation is commonly classified into three levels. At the lowest level, instruction level
parallelism can be exploited to allow small segments of the program to run in parallel. This
level of parallelism is performed routinely and transparently on modern CPUs, but such fine-
grained parallelism requires communication for each loop iteration and thus is only efficient
in the case of very closely coupled computing units (e.g., different algebraic units on the same
processor core).

At the highest level, exemplified by domain decomposition methods [12], the physical domain
is split into several subdomains. The system of equations is solved repeatedly but independently
on each subdomain. The solutions are then stitched together at the edges by suitable boundary
conditions, perhaps aided by a coarse-grid solver to speed up convergence of the long-range ele-
ments in the solution. Communication is only required after the subdomains’ algebraic systems
have been solved, in order to exchange boundary information.

We have chosen the middle ground of parallelising the linear algebra operations used in the
solver for the system of algebraic equations. While this approach requires communication for
each iteration of the (iterative) linear solver, it has the advantage of being very simple to bolt
onto an existing non-parallel implementation; see for example [3], which details the following
approach.

The parallel linear algebra implementation in Diffpack [4] allows the user to treat the paral-
lelisation as a black box in simple cases. Ignoring a few lines of initialisation and user input
changes, the basic parallelisation is performed in three steps:

1. Introduce a partitioner for the grid. The job of the partitioner is to inspect the connectivity
information between grid cells, and partition the work load between the computing nodes
to minimise the interprocess communication while roughly balancing the amount of work.

1Half a second for 1 million nodes at 6.4GB/s memory bandwidth, assuming an average of 70 entries per matrix
row.



2. Chop the global grid into smaller local subgrids, for use in processor-local element as-
sembly.

3. Set up the iterative linear solver as well as the nonlinear solver to use the communication
patterns established by the partitioner to exchange values for the boundary points when
necessary during the solving process.

This recipe will set up parallel communication and utilise it in the linear and nonlinear solvers,
all in about 10 lines of code. However, care must be taken whenever the linear system is ac-
cessed directly, as it never exists in full on any one processor. For example, code to read initial
conditions and material parameters from a file needs to be made aware of how the nodes and
elements are distributed across the processors. This increases the complexity of the parallel
solver, but proper use of object-oriented techniques allows this complexity to be separated from
the core logic of the simulator.

Parallel preconditioning

For general large sparse systems of equations, preconditioning is vital to the performance of the
solvers. Typical discretisations arising from elliptical problems generate matrices with condition
number proportional toh−2, whereh denotes the average mesh resolution. For Krylov-type
iterative solvers this means that the number of iterations to reach a given accuracy is doubled
when the resolution is doubled (see for example [1]). To counter this unfortunate situation, it is
better to solve instead the preconditioned system

CAx = Cb, (6)

whereC mimics the action ofA−1 in such a way that the system (6) is better conditioned than
the original problem. One approach to this is to look for preconditioners that make the condition
number ofCA smaller and less sensitive to the mesh resolution than what is achieved for the
operatorA alone.

While it is in principle possible to represent the preconditioner as a matrixC, its action on a
vectorv is usually implemented either through solving a subsidiary systemMx = v (hence
C = M−1), or procedurally. Either way, the operation must be of complexity no higher than
O(N) to be worthwhile. This rules out the trivial option of parallelising theCv product in the
same way asAv. In fact many standard preconditioners such as Gauss-Seidel and the ILU fam-
ily of incomplete factorisation methods are known to perform badly in their default modes of
operation, and approximate variants are preferred in the parallel case. Finding a good precondi-
tioner is often the main obstacle for parallelisation of serial solvers.

Algebraic multigrid

Multigrid methods are based on the profound observation that even simple iterative methods
are very efficient at removing the high-frequency components of the error. Thus, while they
may be inefficient or even ineffective assolvers,they are very goodsmoothersof the error. The
multigrid approach offers a method for transposing all error components into high-frequency
ones.

In the original multigrid formulation, known as geometric multigrid (GMG), this transposition
is achieved by formulating the problem on a series of grids at successively coarser resolution.
The low-frequency components on a fine grid become high-frequency components on a coarser



mesh. By iterating between smoothing on the different grid levels and exact solution at the
coarsest level, the solution is reached on the fine grid. A survey of parallel GMG methods is
found in [6].

Although conceptually simple, this approach has the drawback of requiring meshes at different
resolutions. For general unstructured grids, this is impractical to generate. Algebraic multigrid
(AMG), in contrast, does not require grid information at all. The transposition is performed
using only the information in the linear system itself, in particular the connectivity information
between nodes that is inherent in the coefficient matrix, in a process calledaggregation[14].
This method is therefore suitable for general meshes and geometries. While the aggregation is
usually competitive with or even surpasses the efficiency of the GMG grid hierarchy, it must be
generated for eachA. Aggregation time is usually of the same magnitude as solving the system.
Parallel approaches to the AMG methods are surveyed in [14].

Interfacing Diffpack with the ML parallel AMG preconditioner

The brief introduction above notwithstanding, we can for the present purposes consider AMG
as a a black-box preconditioner with promising parallel scalability. We interfaced our existing
Diffpack solver with ML [5], which is a mature, open-source AMG solver library suitable for
parallel computations.

ML requires the implementation of two interface methods,getrow (retrieve a specified row
from A) andmatvec (multiply a vector byA), and also a methodcomm(exchange values
between processors) for parallel runs. Diffpack requires a methodapply (apply the operator
C on a vector). In the non-parallel case the semantics of these methods are clear and the imple-
mentation of the glue layer is straightforward. In the parallel case, however, we must be careful
so that the two views of local–global matrices and mappings match. In particular, Diffpack is
designed to handle an arbitrary amount of overlap between processors, while ML expects every
matrix entry to be the sole responsibility of exactly one processor.

In order to achieve this, we modified the standard Diffpack grid partitioner to partition the nodes
of the grid instead of the elements, and then to include an element in a subdomain if at least
one of its nodes has been partitioned into this subdomain. In other words, the subdomains are
partitioned to have a single layer of shared elements on the boundaries. This guarantees that
each interior point belongs to just one subdomain, and that each global point is an interior point
(a nodal overlap of exactly one).

With this guarantee, the consistent view that ML requires is achieved by just hiding from ML
those rows of the Diffpack matrix that correspond to interdomain boundaries (i.e., ghost nodes).

Results

In the following, we first compare the convergence of the algebraic multigrid preconditioner
with a few standard preconditioners on the coupled system given in equations (1)–(5). We then
evaluate the parallel performance of the AMG preconditioner on multiple processors.

A note on terminology: Byspeedupwe refer to the decrease in runtime when running onP
processors, compared to running the same workload on one processor. IfT (P ) is the measured
runtime onP processors, the speedup is given asS(P ) = T (1)/T (P ). Theefficiencyof a given
speedup is the fraction of perfect (linear) speedup,E(P ) = S(P )/P ; thus, in a sense, how
much effective work each processor contributes to the total.

The order of an iterative solver is a measure of how the number of iterations grows with the



problem size. Unpreconditioned Krylov solvers on elliptical problems typically converge2 in
O(N1/d) iterations whereN is the total number of nodes ind spatial dimensions. Anorder op-
timal preconditioner reduces this toO(1) — the number of iterations is independent of problem
size.

The test cases

We have tested the preconditioned BiCGStab3 solver on a number of test cases of increasing
complexity:

SSC4 A grid of 4x4x4 elements (5x5x5 nodes, 625 unknowns) with constant anisotropic mate-
rial parameters.

LSC Similar to SSC, with resolution increased to 80x80x80 nodes (2.5M unknowns).

SUC An unstructured grid from a realistic basin model with 170k nodes (850k unknowns) and
the same constant material parameters as SSC/LSC.

LUC Similar to SUC, with three times the resolution inx andy directions; 1.5M nodes (7.3M
unknowns).

SUV The same grid as SUC, but with realistic, variable material parameters. Some of these
parameters are quite jumpy, the permeability may for example change 10 orders of mag-
nitude from one layer of rock to the next.

LUV The LUC grid with the same material parameters as SUV.

In all cases, the convergence criterion for the solver was the reduction of the residual by a factor
of 10−8.

While we have included a series of simpler test cases to build some understanding of the be-
haviour of the various preconditioners under different conditions, our purpose is ultimately to
solve systems of the same nature as SUV and LUV; i.e., with realistic material parameters on
large unstructured grids.

Hardware

All memory-intensive tests and most non-parallel tests were performed on a 2x2 core5 Xeon
EM64T with 36GB of memory, while all runtime measurements and most parallel tests were
performed on a 20+ node cluster of 2x1 core 1.3GHz Itanium-2 IA64 processors with 4GB of
memory. The cluster is connected by switched gigabit ethernet. In the cluster tests, most timing
results were collected with both cores of each node occupied with similar workloads to keep
the memory subsystem load consistent.6

Some of the parallel runs were either too big to fit in memory on the given number of cluster
nodes, or utilised more than one process per processor. In these cases only the iteration count
and not the runtime is reported.

2I.e., reduce the residual by a fixed factorε.
3Stabilised bi-conjugate gradients, suitable for nonsymmetric matrices [13].
4Abbreviation key:Small/Large,Structured/Unstructured,Constant/Variable.
5That is, two physical processors with two cores each.
6The two exceptions were the 4- and 6-processor LUV tests. We found the performance difference to be quite

small on this particular architecture, within±3% when using both cores on one node compared to using a single
core on two nodes.



Iterations
Precond. SSC LSC SUC LUC SUV LUV
None >5000 — — — — —
Jacobi 18 415 1372 2647 487 1029
ILU 5 50 52 300 >5000 >5000
AMG 5 8 40 51 47 42

Table 1: Number of iterations to reduce the residual by10−8 for the different preconditioners. “—” indi-
cates missing measurements, while “>5000” means that the problem did not converge in 5000 iterations.
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Figure 1: The number of BiCGStab iterations using AMG preconditioning for the SUV (left) and LUV
(right) test cases running on multiple processors. The number jumps around somewhat, which is expected
when using uncoupled aggregation, but no growth trend is evident.

Serial performance

We tested the coupled system of equations (1)–(5) without preconditioning and with the Jacobi,
ILU and AMG preconditioners. On this system, the unpreconditioned solver failed to converge
in even the simplest test case (table 1). The Jacobi preconditioner showed dramatically reduced
performance on the unstructured grids, although (surprisingly) less so with variable material
parameters. The ILU preconditioner showed better performance than Jacobi on all the tests
with constant material parameters, but on the unstructured grids the iteration count increased
dramatically with the grid size. ILU failed to converge at all with variable material parameters.
The only tested preconditioner that performed satisfactorily, with reasonably low number of
iterations and low order in all tests, was the AMG preconditioner.

Parallel performance

We show the parallel tests only for the SUV and LUV test cases, because we are primarily
interested in real-world performance. Due to high memory requirements, we were not able to
test the largest of these on less than 4 processors, and thus speedup and efficiency numbers are
not directly available for the LUV case. This complication is handled in the next section.

The number of iterations for the AMG preconditioner shows that the preconditioner perfor-
mance is acceptable also in the parallel case (figure 1). The aggregation strategy was uncoupled,
i.e., aggregates are formed independently on each subdomain. This is the simplest strategy and
does not require communication in the aggregation phase, but leads to suboptimal aggregation.
Even so, performance loss (measured in number of iterations) seems to be bounded to within
50% or so, with no apparent trend. A number of alternative parallel aggregation strategies are
discussed in [14] and supported in ML, but we were unable to get these to work satisfactorily
in the time frame of this article.
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Figure 2: The efficiency results for the SUV case, using the Jacobi (left) and AMG (right) precondi-
tioners, show a similar overall trend. The AMG efficiency is modulated by the number of iterations (as
shown in figure 1).

The Jacobi and AMG preconditioners were the only preconditioners to converge in all the serial
tests. Jacobi is known to parallelise well, and we compared its performance to that of AMG
for the SUV case. Timing results for up to 42 processors show that the performance profile for
the two preconditioners are similar when we take into account the varying number of iterations
of the AMG preconditioner (figure 2). Since the AMG preconditioner was about 5 times faster
than Jacobi in the serial SUV test and 10 times faster in the serial LUV test, we consider only
AMG in the following.

For the efficiency numbers, we measured the time for one full iteration of the nonlinear solver:
element matrix assembly, aggregation and setup, and linear solve. Together, these account
for most of the time spent in the simulator, thus we expect this to be a realistic estimate
of the speedup of the entire simulator for long runs.7 The maximum speedup for the AMG-
preconditioned SUV case was 26, running on 40 processors. As we shall see, an estimated
speedup of nearly 41 was achieved for the LUV case, running on 42 processors (table 3).

Performance modelling

Measuring the speedup and efficiency of the LUV case directly was not possible, since the high
memory requirements8 of this case meant that we were unable to run it on less than 4 processors.
For this reason, and also because we are interested in what performance to expect when running
on more processors, a model for the parallel performance is desirable.

In [3], a simple performance model for the parallel computation is given. For a problem with a
total ofN grid nodes in three dimensions, there are three main costs:

1. The solution of the local problem, with complexity of orderO(N/P ),

2. exchange of interdomain boundary values, of orderO((N/P )2/3) in 3D, and

3. collective communication, for e.g. inner products, of orderO(log P ) independently of
problem size.

We also need to take into account the variability which is due to the AMG preconditioner
not converging equally fast for different numbers of processors. If we assume that the setup

7Time spent preparing and saving results is the remaining notable contributor, although for very short runs
setup time may be significant.

8A bit more than 12GB.



a b c d
SUV 0.248 6.65 · 10−4 2.12 · 10−3 0.0999
LUV 0.197 8.01 · 10−4 6.32 · 10−3 —

Table 2: The parameters of (7), found by least squares regression for the two test cases.d was not
estimated in the LUV case, instead the SUV value was used. Whilea andb are of similar magnitudes in
the two cases,c (which is associated with the cost of exchange of boundary information) is tripled in the
large case. We have not investigated whether this indicates a flaw in the model or just less than perfect
measurements and parameter fitting.
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Figure 3: Measured (circles) and modelled (solid line) parallel efficiency of the SUV (left) and LUV
(right) cases. The shaded areas in the graphs are the areas between the curves created by inserting the
observed minimum and maximum ofI(P ) into equation (7). Because of the variation in the number of
iterations, superlinear speedup is seen for LUV atP = 8 andP = 36.

phase and the iteration phase of the solver have similar communication patterns, this leads to an
equation for the runtime of the solver,

T (P ) = (1 + aI(P ))

(
b
N

P
+ c

N2/3

P 2/3
+ d log P

)
, (7)

whereI(P ) is the number of iterations required forP processors. The coefficients can be found
by a least squares regression.

For both the SUV and the LUV cases, we followed a similar routine: First we used about half
of the measured runtimes (up toP = 16 for SUV, P = 20 for LUV; see table 3) and estimated
the parameters of (7) from these. We then compared the prediction with the measured values
up toP = 42, to evaluate the predictive power of the model. The error atP = 42 was 4% for
the SUV case, 2% for the LUV case.9 We then used all data points to create a final estimate
of the parameters (table 2), which was used to deduce the missing single-processor runtime (in
the LUV case) and to extrapolate to larger number of processors (in both cases). The resulting
projections are shown in figure 3.

By fitting equation (7) to the timing results for the SUV case (figure 3, left), we find that the
parallel performance is good at least up to 100 processors, with the efficiency not projected to
drop below 0.5 before the number of processors goes above 128–200. We hope to be able to test
this assertion in the near future.

In the LUV case (figure 3, right), we used the modelled performance not only to extrapolate
the performance but also to find the single-processor runtime. This value anchors the measured

9In the LUV case we only fitted thea, b andc parameters, and used the samed as for SUV.d is independent of
problem geometry and partitioning.



SUV LUV
P I T [s] S E I T [s] S E
1 47 1516.2 1.00 1.00 42 (11629) 1.00 1.00
2 48 783.2 1.94 0.97 53 — — —
4 54 449.4 3.37 0.84 44 3148.2 3.69 0.92
6 52 290.2 5.22 0.87 46 2193.5 5.30 0.88
8 67 280.0 5.42 0.68 38 1397.6 8.32 1.04

10 — — — — 44 1310.3 8.88 0.89
12 59 171.3 8.85 0.74 39 991.7 11.73 0.98
14 — — — — 39 850.0 13.68 0.98
16 51 116.2 13.05 0.82 40 777.9 14.95 0.93
18 — — — — 43 723.1 16.08 0.89
20 56 102.4 14.80 0.74 44 676.7 17.19 0.86
22 — — — — 38 537.9 21.62 0.98
24 68 104.8 14.46 0.60 41 524.8 22.16 0.92
28 53 71.5 21.20 0.76 41 455.9 25.51 0.91
32 52 62.9 24.09 0.75 41 402.5 28.89 0.90
36 57 62.1 24.43 0.68 36 321.6 36.16 1.00
40 59 58.3 26.01 0.65 42 340.0 34.20 0.86
42 66 61.7 24.57 0.58 37 284.1 40.93 0.97
64 53 — — 53 — — —

128 48 — — 37 — — —

Table 3: Measured iteration counts and runtimes, with associated speedup and efficiency values. The
LUV single-processor runtime is estimated, not measured; in all other cases, “—” is used to indicate
missing measurements. The speedup and efficiency values are relative to the single-processor runtime.

values of speedup and efficiency, since they are both defined in terms of the runtime on one
processor. Hence there is in this case a small uncertainty in the absolute positioning of the
measured points on the efficiency scale (their relative positions are unaffected).

The performance model predicts that larger problems have better parallel scalability than smaller
problems, which we also see in the measurements. Depending on the reliability of the perfor-
mance model, the SUV case may have adequate performance up to perhaps one thousand pro-
cessors (figure 3, right), but the extrapolation at such a distance is highly uncertain. Even so, we
know that the parallel efficiency gets better as the size of the problem increases. Thus, as even
larger simulations are required, scaling into the thousands of processors should be possible.

Conclusion

We have shown that the algebraic multigrid method, as implemented by ML, performs well as
preconditioner of the system of equations arising from the coupled equations of heat, pressure
and linear elasticity, even when used as black-box software with no tuning to the specific sys-
tem of equations. Furthermore, the preconditioned BiCGStab solver, parallelised at the linear
algebra level using Diffpack tools (with slight modifications to accommodate the AMG precon-
ditioner) scales adequately at least up to medium-sized clusters (10–100 nodes), and likely to
even larger clusters for problems with millions of mesh points.
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