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Part |: The Basics

Intensive CourseElements of Scientific Computipart I: The Basics — p.



Computing Integrals
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Trapezoid method

* Generally we will study how to approximate definitive
Integrals of the form
b
/ f(x)dx
a

* Consider e.g. the function f(x) = €‘ and calculate

/1 ” dx (1)

* We will in the following pretend that this integral is not
analytically integrable , and later use the exact
analytical solution for comparison
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Trapezoid method

Figure 1. The figure illustrates how the integral of f(x) = e (lower
curve) may be approximated by a trapezoid on a given interval
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Trapezoid method

e Let y(x) be the straight line equal to f at the endpoints
Xx=1and x=2, I.e.

y(x) =e[l+(e—1)(x—1)]
* Note that

y(1) =e=f(1)
y(2) =€ = f(2)

e Since y(Xx) ~ f(x) we approximate the integral by

/jede /12y(x)dx 2)
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Trapezoid method

We can now compute both integrals and compare the
results

* Approximate

/12y(x)dxz /lze[“ (e—1)(x—1)Jdx= %e+%e2z5.0537

* Exact
2
/ e€dx=e(e—1) ~ 4.6708
1
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Trapezoid method

The relative error is

5.0537—-4.6708

- 100%~ 7.69%
5.0537 00%¢ 7.6%
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Trapezoid method

Generally we can approximate the integral of f by

b b
/ f(x)dxz/ y(X)dx (3)
a a
where y(x) is a straight line equal to f at the endpoints,
.e.
f(b)— f(a
%) = f(@)+ - xa) @)

y(X) is called the linear interpolation of f in the interval
[a,b]
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Trapezoid method

e Since yis linear, It is easy to compute the integral of
this function

/aby(x)dx: /ab [f(a)nL f(bg:;(a) (x—a) | dx

= (b-a) (f(a) + (b))

* The trapezoid rule is therefore given by

(f(a)+ (b)) (5)

NI -

/bf(x)dxz(b—a)
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Example 1

f(x)=sin(x), a=1, b=15
Trapezoid method

/11.5 f(x)dx~ (1.5— 1)%(8"1(1) +5in(1.5)) ~ 0.4597

The exact value

/11'5 f(X)dx= — [cogX)];° = —(cog1.5) —cog1)) ~ 0.4696

The relative error Is

0.4696— 0.4597
0.4696

-100%~ 2.11%
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Trapezoid method

Now we approximate the integral using two trapezoids

e Choosing the middle point between a and b,
c= (a+b)/2, we have that

/ab f(X)dx= /:f(x)dx+ /Cb f(x)dx

* Using (5) on each integral gives

(£()+ (b))

NI -

[ t0axs | (e-a); (1(a)+ 1(0)| + | (b0
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Trapezoid method

e By using that
c—a=b-c= %(b—a),

we get

/bf(x)dxz%(b—a)[f(a)+2f(c)+f(b)] (6)
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Example 2

* Using (6) on the problem considered in Example 1
gives

15
/ sin(x)dxf\,%r %[Sln( 1) +2sin(1.25) 4+ sin(1.5)] ~ 0.4671
1

* The relative error of this approximation is

0.4696—0.4671
0.4696

-100%= 0.53%

e This Is significantly better than the approximation
computed in in Example 1, where the error was 2.11%
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Trapezoid method

/

Figure 2: The figure illustrates how the integral of f(x) = sin(x)
can be approximated by two trapezoids on a given interval
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Trapezoid method

More generally we can approximate the integral using n
trapezoids

e Leth="22
e Define x; = a-+1h
* The points

A=Xg <X < - < X1 < X =D

divide the interval from a to b into n subintervals of
length h
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Trapezoid method

* The integral has the following additive property

1

/ab f(x)dx= /XOX1 f(X)dXx+ /XX2 f(x)dx+--- _|_/Xxn f(X)dX

_ 23/: f (x)dx (7)

* We use (5) on each integral, I.e.

[ 09x= (2 =) 3 F00) + F 0.

2
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Trapezoid method

Since h=x_1—X;, we get

/: f(x)dx = sz/; f (x)dx

~ TZ) g F () + F (X))

h

_ é([f(xo) + F(x0)] + [F(x0) + F(x)] + [F (%) + T (Xa)]

+ o [T (2) + F(Xn-2)] + [T (Xn-1) + f(X”)])

1

:hléf(xo)+f(x1)+f(Xz)+-~

oot F(Xn2) + F(Xno1) + . f (Xn)J
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Trapezoid method

Written more compactly

/abf(x)dxwh éf(xo)Jer(xi)Jréf(xn) (8)
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Example 3

The integral considered in Example 1 with n=100.
e h— b-a_ 05 __
h=>2 =15 =0.005
* We get

15 1 | 1
/ Sin(x)dx~ 0.005| 2 sin(L) +$in(1.008) + -+ + > sin(L5)
1
_ 0.469564

e The relative error Is

0.469565- 0.469564

. 0f— 0
0.469565 100%—= 0.0002%
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Example 4

Calculate [, f(x)dx, where f(x) = (1+x)e*
 The exact integral is

/01(1+x)e?<dx: xei=e

e Define Ty=h[3f(0)+ 31 f(x)+3f(1)]
 where nis given and h= % and x;=ihfori=1,...,n

* We want to study the error defined by

Eh — |e—Th\
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Example 4

h

En

En /12

1.0000

0.5000

0.5000

0.5000

0.1274

0.5096

0.2500

0.0320

0.5121

QO B~ NF| S

0.1250

0.0080

0.5127

16

0.0625

0.0020

0.5129

32

0.0313

0.0005

0.5129

64

0.0156

0.0001

0.5129

Table 1: The table shows the number of intervals, n, the length of

the intervals, h, the error, Ep, and E/h?
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Example 4

e From the table it seems that

En
2 ~ 0.5129
for small values of h
e Thatis
E, ~ 0.512%2 9)

* This means that we can get as accurate approximation
as we want
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Example 4

Assume that you want E, < 107>

then 0.512%° < 10°°
or h<0.0044

This means that n=1/h > 22647
n has to be an integer, so therefore we set n= 22710

obtain the desired accuracy

Intensive CourseElements of Scientific ComputiRgrt I: The Basics — p. -



Example 5

We want to test the trapezoid method for the following three
Integrals:

e [Ix*dx
° [$x%%dx
* Jo v/xdx

* Let E; denote the error for a given value of h, i.e.

En = /abf(x)dx—h %f(xo)Jr_if(Xi)Jr%f(Xn) :

where h="22and x;, =a+ihfori=0,...,n
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Example 5

1 L 1 1 1 1 1 J
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3. The figure shows the graph of /X (upper), x* (middle)
and x?° (lower)
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Example 5

Jo xtdx=1 JoxP0dx= % Jo v/Xdx= 2
h 10°E, En/h? | 10PE, En/h? | 10PE, En/h?
0.01 3.33 033 16.66 167 20.37 204
0.005 0.83 033 417 167 7.25 290
0.0025 0.21 033 1.04 167 2.57 417
0.00125 | 0.05 Q33 0.26 167 091 584

Table 2: The table shows how accurate the trapezoidal method
IS for approximating three definite integrals.
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Example 5

Conclusions
* |n the two first integrals % seems to be constant

e The constant is smaller for x* than for x2°

* The approximate integral of /x on [0,1], seems to
converge towards the correct value as h— 0, but %
Increases with decreasing h
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Trapezoid method

* We have studied several examples where the exact
Integral is obtainable

* |n practice these examples are not so interesting

* Numerical integration is more interesting on examples
where analytical integration is impossible
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| nport nunpy as np

def integrate(a, b, n, function):
X = np.linspace(a, b, n+l);
val ue = function(x);
val ue[ 0] = 0. 5*val ue[ 0]
val ue[ -1] = 0. 5+val ue[ -1]
h = (b-a)/float(n)
return hxsumval ue)

def f(x):

return x**2;

print "The integral is approximtly

I ntegrate(0, 1, 100, f)
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Differential Equations
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Differential equations

* A differential equations is: an equations that relate a
function to its derivatives in such a way that the
function can be determined

* |n practice, differential equations typically describe
guantities that changes in relation to each other

* Examples of such equations arise in several disciplines
of Science and Technology (e.g. physics, chemistry,
biology, economy, weather forecasting,...)
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Cultivation of rabbits

* A number of rabbits are placed on an isolated island
with perfect environments for them

* How will the number of rabbits grow?

Note that this question can not be answered based on
clever thinking only.
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The simplest model

Let r =r(t) denote the number of rabbits

Let ro =r(0) denote the initial number of rabbits

Assume that the change of rabbits per time is given by

f(t)

For a small period of time At > 0, we have

r(t+At) —r(t)

At

= (1) (10)

Assuming that r(t) is continuous and differentiable and
letting At go to zero, we obtain

f(t) (11)
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The simplest model

* From the fundamental theorem of Calculus, we get the
solution

r(t) =r(0) +/Ot f(s)ds (12)

* The integral can then be calculated as accurate as we
want, with the methods presented in the previous

lectures

Intensive CourseElements of Scientific ComputiRgrt I: The Basics — p. :



Exponential growth

* We now assume that the growth in population is
proportional to the number of rabbits, i.e

r(t+At) —r(t)

= ar(t 13
where ais a positive constant
e Letting At go to zero we get
r'(t) = ar(t) (14)

* |n practice a has to be measured
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Analytical solution

* We want to solve the problem

r'(t) = ar(t) (15)
with initial condition
r(0) =ro
e Since
o ar
dt
e Wwe have

%dr:adt
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Analytical solution

* by integrating we get
/%dr:/adt

In(r) =at+c (16)
where c Is a constant of integration
* The right value for c is received by puttingt =0

* which gives

c=1In(ro)

Intensive CourseElements of Scientific ComputiRgrt I: The Basics — p. :



Analytical solution

From (16) we get

In(r(t)) —In(ro) = at

or
In(@) = at
l'o
and therefore
r(t) = roe™ (17)

Conclusion: the number of rabbits increase
exponentially in time
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Logistic growth

The exponential growth is not realistic, since the number of
rabbits will go to infinity as the time increase.

* We assume that there Is a carrying capacity R of the
Island

* This number tells how many rabbits the island can
feed, host etc.

* The logistic model reads

r'(t) = ar(t) (1— %) (18)

where a > 0 Is the growth rate and R > 0O Is the carrying
capacity
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Analytical solution

Solve
r'(t) = ar(t) (1— %)
r(0) =ro
We write
dr r
g=ar(1-g)
or
dr — = adt.
r(1-g)
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Analytical solution

By integration we get

r
In—— =at+c
R—r *

where c Is a integration constant. This constant is
determined by the initial condition

I'o

In = C
R—I’o
and thus
S
R—r
In| ——| =at,
_R—I’o_
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Analytical solution

or

I o
—_— = e™.

R—r R-—1g
Solving this with respect to r gives

lo
rt) = ro+e—at(R—ro)R (19)

(see Figure 4)
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Figure 4: Different solutions of (19) using different values of ro.
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Numerical solution

For simple examples of differential equations we can
find analytical solutions

This I1s not the case for most of the realistic models of
nature

Analytical solutions are still important for testing
numerical methods

Analytical insight is very important for designing good
numerical methods

An example of this is the insight we got above from the
arguments about increase and decrease in rabbit
population

Intensive CourseElements of Scientific ComputiRgrt I: The Basics — p. ¢



The simplest model

We now pretend that we do not know the exact solution of

with r(0) =ro, and solve the problemint € (0,1).
* Pick a positive integer N, and define the time-step

1
At = —
N

e Define time-levels t, = nAt
* Letr, denote the approximation of r(t,)

M~ r(t)

Intensive CourseElements of Scientific ComputiRgrt I: The Basics — p. ¢



The simplest model

Remember the series expansion
r(t+At) = r(t) +Atr'(t) + O(At?)
or
t+At) —r(t
() = T Ai "V o

By setting t =t,, we therefore see that

r(tn+1) B r(tn>
At

r'(ty) ~

By using the approximate solutions r ~ r(t,) and
M1~ r(the1), the numerical scheme is defined

rn+1 —I'n
N\t
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Exponential growth

We now want study numerical solution of the problem
r'(t) =ar(t),t € (0,T), where ais a given constant, and
initial condition r(0) = ro.
* We choose an integer N > 0O, define the time-steps
At =T /N and the time-levels t, = nAt, r, is the

approximation of r(t,) and the derivative is
approximated by

M (thys) — I (tn)
At

r'(tn) ~

* The numerical scheme is defined by

rn+1 —I'n
= ar 20
o : (20)
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Exponential growth

* Which can be written
e This formula gives initially

rh = (1+aAt)ro
r, = (1+adt)ry = (1+aht)?rg

e and for general n we can see that

rn= (1+alt)rg (22)
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Example 8

We test an example wherea=1,rp=1and T = 1.
e The exact solution is r(t) = € and therefore

r(1) = e~ 2.718

e Using N = 10iIn the numerical scheme gives

1
r(1) ~ry=(1+ 1—0)1% 2.594

* Choosing N = 100, gives

1
— (14— 10927
r100= ( +100) 05
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Example 8 - Convergence

* The general formula is

1
r(l)~ry=(1+=)N
N
e From Calculus we know that
lim (1+ 1)N —e=r(1)
N—> o0 N -

* Thus the numerical scheme will converge to the right
solution in this example
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| nport nunpy as np

def f(t, u):
return u;
T =1,

N = 10; #nunber of tine steps
t np. linspace(0, T, N+1)
dt = float(T)/N

U = np.zer os( N+1)
uf[0] = 1; # set intitial condition

for i in range(N):
ufi+1] = uf[i] + dt*=f(t[i], u[i])

| nport pyl ab
pylab. plot(t, u, t, np.exp(t))
pyl ab. show()
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Numerical stability

Consider the initial value problem

with analytic solution

* which gives

~100y(t), te(0,1) (23)

1

_ o100

yit)=e

e For a given N and corresponding At we have

Vo1 = (1 - 100At )y, (24)

o=

n
,_ 100
N
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Numerical stability

Note that the analytical solution is always positive, but
decreases rapidly and monotonically towards zero

For N = 10 we get the formula
100\ "
— 1— —_— — —9 n

which givesyg =1, y1 = -9, Vo =18, y3=—-729
This is referred to as numerical instability
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Numerical stability

For y, to stay positive we get from (24) that

1-100At >0
or
At < 1 (25)
100
which means
N> 101

This Is referred to as stability condition

A numerical scheme that is stable for all At is called
unconditionally stable

A scheme that needs a stability condition is called
conditionally stable

Intensive CourseElements of Scientific ComputiRgrt I: The Basics —p. *



An implicit scheme

We still study the exponential model, r'(t) = ar(t).
* Above the observation

r(thee) — 1 (tn)
At

(t) = +O(At)

e |ed to the scheme

rn+1 —I'n
At

— a.rn

e Similarly we could have observed that

r(tn+1) B r(tn)
At

(thi1) = +O(At)
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An implicit scheme

e This leads to

e This leads to
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An implicit scheme

Reconsider the initial value problem

y(t) =
y(0) =

The implicit scheme gives

v =
(

_1OQ/(t)7
1

1 n
1+ 100ﬁt>

N n
N+ 100)

We see that y, Is positive for all choices of N

The scheme is therefore unconditionally stable
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An implicit scheme

N

YN

10t

3.85-10° 1

10

7.89-10731

10°

4.05-1042

10/

3.72-10°%

The exact solution is e 190~ 3.72.10 %4,
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Explicit and implicit schemes

We consider problems on the form
V' (t) = something(t) (26)
The term V'(t) is replaced

Vi1 — Vn
At

The right hand side can be evaluated int =t, ort =t,.4.
e Explicit scheme: vy, 1 = v, + Atsomething(ty)
e Implicit scheme: v,.1 = v, + Atsomething(t,, 1)

Implicit schemes are often unconditionable stable, but might
be harder to use. Explicit schemes are often only
conditionable stable, but are very simple to implement.
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Logistic equation
We study the explicit scheme for the logistic equation

r'(t) = ar(t) ( — %) (27)
r(O) = T, (28)
where a > 0 is the growth rate and R is the carrying

capacity. The discussion above gives the properties

e If R>>rg, then for small t, we have r'(t) ~ ar(t) and
thus exponential growth

* If 0<rg< R, then the solution satisfies ro <r(t) <R
and r'(t) > O for all time

e Ifro > R then the solution satisfies R<r(t) <rp and
r'(t) < Ofor all time
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Explicit scheme

An explicit scheme for this model reads

'nt1—"TIn I'n
=ary(1l——=
At nl R)’
or r
M1 = M+ anit(l— ﬁn). (29)

We assume the same stability conditions for this scheme as
for the exponential growth because of the exponential
growth, I.e.

At <1/a (30)
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Implicit scheme

The implicit scheme for the logistic model reads

rn+1‘_rn
At

M'n+1
=ar(1—-27),

or

= Ip.

M+1
=)

* For r, given, this is a nonlinear equation in rn 1

a1 —Atarn1(1—

* This Is easy to solve since it is only a second order
polynomial equation

The scheme is unconditionally stable and it fulfills the same
properties as the explicit scheme did.
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Systems of Ordinary Differential
Equations
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Systems of ordinary differential equation:

We have studied models of the form
yt)=F(), Yy(0) =y (31)

this is an scalar ordinary differential equation (ODE).
We shall now study systems of ODEs. Especially we will

consider numerical methods for systems of two ODESs on
the form

y(t) = F(,2, y(0) = o,
Z(t) = G2, 20 = 2.

Here yp and z; are given initial states and F and G are
smooth functions.

(32)
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Rabbits and foxes

Earlier we have studied the evolution of a rabbit
population, and studied the Logistic model

y =ay(1-y/B), ¥(0)=yo (33)
where now y is the number of rabbits, a > 0 denotes
the growth rate and 3 is the carrying capacity.

Note that this model is the same as the Exponential
growth model if 3 = oo

We will consider the case where foxes are introduced
to the model

This model is called a predator-prey system, and is
similar to models describing populations of fish (prey)
and sharks (predators)
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Fish and Sharks

The first mathematician to study predator-pray models was
Vito Volterra. He studied shark-fish populations, but his
results are valid for rabbit-fox populations as well.

* Let F =F(t) denote the number of fishes and S= St)
the number of sharks for a given time t

e |f there is no sharks we assume that the number of
fishes follows the logistic model

F'=aF(1-F/PB) (34)
e EXpressed with relative growth it reads

s —a(1-F/p (35

Intensive CourseElements of Scientific ComputiRgrt I: The Basics — p. ¢



Fish and Sharks

* Introducing sharks to the model, we assume the
relative growth rate of fish is reduced linearly with

respectto S

/

C—a(l-F/ByS). (36)

wherey> 0
° or

F'=a(1-F/B-ySF (37)
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Fish and Sharks

* |f there is no fish, we expect the number of sharks to
decrease, and assume the relative change of sharks to

be expressed as

where 6 > 0 is the decay rate

* We also assume that the relative change of sharks
Increase linearly with the number of fish

% — _54¢F (39)
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Fish and Sharks

We now have a 2 x 2 system which predicts the
development of fish- and shark- population

F'=a(l-F/B—ySF, F(0) =Fo, (40)
S = (eF - 9)S, S0)=%  (41)

* |n practice the parameters a, 3, y and g, and initial
values F and & must be determined with some
estimation methods
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Numerical method: Unlimited resources

* First we study the system (40)(41) with 3 = o, I.€.
unlimited resources of food and space for the fish

* For the other parameters we choose
a=2 y=1/2, €=1 and 0&=1, which gives the
system

F = 2-9F, F(0)=F, (42)
S =(F-1S 90)=%. (43)

e We introduce At > 0 and define t, = nAt, and let F, and
S, denote approximations of F(t,) and S(t,) respectively
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Numerical method

 The derivatives, F' and S, are approximated with

F(thia) —F(ta) _ Sthe1) —Stn)
- ~F'(t,) and o ~ S(tn),

which correspond to the explicit scheme
e The numerical scheme can then be written

|:n+1—|:n . B
— = (2-S)R (44)
TS R s, (45)

At
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Numerical method

* This can then be rewritten on an explicit form

|:n+1 — |:n‘|‘At(2— Sn)Fn (46)
Sui = Si+HA(F— 1S, (47)
* When Fy and & are given, this formula gives us F and

S by setting n= 0, and then we can compute F, and S
by putting n =1 in the formula, and so on

* |n Figure 5 we have tested the explicit scheme
46)-(47) with Fp=1.9, S =0.1and At =1/1000
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population of fish & shark

Figure 5: The solid curve is the solution for F, and the dashed
curve is the solution for S
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Numerical methods: limited resources

* We do the same as above, but use 3 = 2, which
corresponds to quite limited resources

* The system now reads

F' = (2-F-SF, F(0)=F, (48)
S = (F-1)S 90)=% (49)
e Similar to above we can define an explicit numerical
scheme
|:n+1 = Fy ‘|‘At(2 —F— S1)Fna (50)
Sui = S+A(R - 1S (51)

e The results for Fp=1.9, $ =0.1and At =1/1000are
shown in Figure [6
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Figure 6: The solution for F is the solid curve, whereas the solu-
tion for Sis the dashed curve.
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Numerical methods

* We see from Figure 5 that the solutions for both F(t)
and S(t) seem to be periodic

 From Figure [6/it seems that the solutions converge to
an equilibrium solution represented by S=F =1

* Therefore it Is interesting to notice that, different
parameter values can give different quantitative
behavior of the solution
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Phase plane analysis

We shall now study a simplified version of the fish-shark
model

F'(t) =1-31), F(0)=F,

52
S =F() -1 S0)=-%. (52)
e Using the notation as above an explicit numerical
scheme for this problem reads
Fn—l—l — Fn + At(l o 37)7 (53)

Sn+1 — wa+At(Fn_ 1)7

where Fy and & are given initial states

e Figure [/l show a solution of this scheme when Fy = 0.9,
S =0.1and At =1/1000
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population of fish & shark

Figure 7: The solution for F is the solid curve, whereas the solu-
tion for Sis the dashed curve.
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Phase plane analysis

The solution of (52) seems to be periodic like the
solution of (42)-(43

In order to study how F and Sinteract we will plot the
solution in the F — Scoordinate system, I.e. we plot the
points (F,,S,) for all n-values

In Figure |8 we plot the solution of (53)inthe F—S
coordinate system, with the same specifications as
above (Fp=0.9, §=0.1, At =1/1000

In Figure 9 we do the same, but At =1/100
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Figure 8: Explicit scheme (53) using At = 1/100Q Fy = 0.9 and
S = 0.1, plotted in the F-Scoordinate system
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Figure 9: Explicit scheme (53) using At = 1/100, Fy = 0.9 and
S = 0.1, plotted in the F-Scoordinate system
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def explicit_euler(dt, T, ic):
# Store solutions in list of tuples: one tuple for each tine
times = [0, ]
solutions =[ic, ]

# Extract initial conditions
(FO, S0) =ic

# Start time-loop: let F, S be the previous solutions and F, |S
# be the current solutions
t = dt
(F, S) =1ic
while (t <= T):
# Define the new solutions fromthe old sol utions
F=F +dt*(1 - S)
S=S +dt*x(F_ - 1)
# Store the new sol utions
solutions += [(F, 9)]
times += [t]
# Prepare for next iteration by updating the previous val ues
(F_, S) =(F 9
t += dt

return ti nes, sol uti ons Intensive CourseElements of Scientific ComputiRart |I: The Basics — p. &



Crank-Nicolson scheme

The Crank-Nicolson scheme for the system

F(t) = 1-S1), F(0) = Fo.

SM) =FH)-1, SO =% -
reads
Fn+1At— |:n _ %[(1_31)+(1—Sq+1)]7
1—S 1 >
o _ é[(Fn—].)—I-(Fnjtl_l)]'
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Crank-Nicolson scheme

The Crank-Nicolson scheme can be rewritten as

I:n+1 + %antl = F+ AL - %Sm

(56)
_%FnJrl‘l‘Swl — S‘n_At‘l‘%Fn-

* We see that when F, and S, are given, we have to solve
a 2 x 2 system of linear equations, to find F,,.1 and S,;1
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Crank-Nicolson scheme

Define
1 A2
A= 57
~At/2 1 | (57)
and
Fn+AOt— 25,
b = 2 . 58
" <&m+%a> (58)
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Crank-Nicolson scheme

Solving (56) for one time-step can now be done by:

e Solve
AXn_|_]_ — bn, (59)

where x,,1 IS the unknown vector with two components
e The new solution for F and Sis then

Fr
(ﬁ) = Xnp1 (60)
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Crank-Nicolson scheme

In general, a 2 x 2 matrix

a
i (61)

-
d

IS non-singular If ad # cb. And when ad +# cbthe inverse Is
given by

1 d —b
ad—bc| —c a

(62)
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Crank-Nicolson scheme

* |n order for the problem to be well defined we need the
matrix A to be non-singular

e But we have that
det(A) = 1+At?/4, (63)

which ensures det(A) > O for all values of At, and A is
always non-singular
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Crank-Nicolson scheme

* For the matrix

At =

3!

), the inverse is given by

1 1 A2
1+AZ/4 | At/2 1

(64)

* This fact together with (59) and (60) gives

1

I:n+1 _
St 1+At2/4 | At/2 1

1 —nt)2 | [ F+at-2As,
S —At+ 4R,
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Crank-Nicolson scheme

* We get

i = (L A0/ R (S 4 -s]
At
2

Sii1 = ey [(1-A17/4) Si+4t (5 — 1) + AR,

e Figure [10 plots the solution of this scheme for § = 0.1,
Fo=09and At =1/100Q tisfromt=0tot= 10and
the solution is plotted in the F-S coordinate system
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Figure 10: The numerical solution for the Crank-Nicholson
scheme
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Crank-Nicolson scheme

* |In Figure [10/we observe that the solution again seems
to form a perfect circle

* To study this closer we define, as above

m = (Fn—1)72%+(S—1)° (66)

e and study the relative change

'n— o
67
- (67)

In Table 10

Intensive CourseElements of Scientific ComputiRgrt I: The Basics —p. ¢



Crank-Nicolson scheme

At | N e

1071 | 10° | —2.6682- 10716
1072 | 10° | —1.59986 101/
1073 | 10* | 3.97982 10 Y/
1074 | 10° | 7.06021-10°1%°

Table 3: The table shows At, the number of time steps N, and the

“arror” "o
o
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Crank-Nicolson scheme

e \We observe that the relative error % IS much smaller

for the Crank-Nicolson scheme (66) than for the explicit
scheme (53)

e \We therefore conclude that the Crank-Nicolson
scheme produces better solutions than the explicit
scheme
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Nonlinear Algebraic Equations
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Nonlinear algebraic equations

In implicit methods we need to solve equations on the form

U1 —Un = Atg(Uns1) (68)

where At Is a small number, we know that u,,1 Is close to
u,. This will be a useful property later.
More generally, we want to solve egatations on the form:

f(x) =0, (69)

where f is nonlinear. We assume that we have available a
value X close to the true solution x* (, i.e. f(x*) = 0).

We also assume that f has no other zeros in a small region
around Xx*.
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The bisection method

Consider the function

f(x) = 24+x—¢€ (70)

for x ranging from O to 3, see the graph in Figure [11.

e \We want to find x = x* such that

f(x*)=0
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Figure 11: The graph of f(x) =24+ x—¢€.
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The bisection method

An iterative method is to create a series {x; } of

approximations of x*, which hopefully converges
towards x*

For the Bisection Method we choose the two first
guesses Xp and x; as the endpoints of the definition
domain, I.e.

Xo=0 and Xx;=3

Note that f(xp) = f(0) > 0and f(x;) = f(3) <0, and
therefore Xy < X* < X1, provided that f is continuous

We now define the mean value of xg and Xy

1 3

Xo = é(xo—l—xl) = >
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Figure 12: The graph of f(x) = 2+ x— € and three values of f:
f(xo), f(x1) and f(xz).
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The bisection method

We see that

3
flxe) = f(5) = 2+3/2—¢e%? < 0,

Since f(Xg) > 0and f(x2) <0, we know that Xy < X" < X2
Therefore we define

1 3

Xq = — Xo) = —
3 2(Xo+ 2) 1

Since f(x3z) > 0, we know that x3 < X* < X (see
Figure (13

This can be continued until | f(x,)| is sufficiently small
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Figure 13: The graph of f(x) = 2+ x—¢&* and two values of f:
f(x2) and f(x3).
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The bisection method

Written in algorithmic form the Bisection method reads:

Algorithm 1. Given a, b such that f(a)- f(b) < 0and
given a tolerance €. Define c= 3(a+b).
while |f(c)| > € do
if f(a)-f(c)<O
thenb=c
elsea=c
c:=3(a+b)
end
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Example 11

Find the zeros for

f(X) =2+x—¢€

using Algorithm 1 and choose a=0, b= 3 and € = 10°°.
* |n Table 4/ we show the number of iterations i, ¢ and

f(c)
e The number of iterations, I, refers to the number of
times we pass through the while-loop of the algorithm
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C f(c)
1.500000f —0.981689
0.750000 0.633000
1.312500f —0.402951
1.136719| 0.0201933
16 | 1.146194| —2.65567-10°°
21| 1.146193| 4.14482 10/

o~ DN P —

Table 4: Solving the nonlinear equation f(x) =2+ x—€& =0 by
using the bisection method; the number of iterations i, c and f(c).
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Example 11

We see that we get sufficient accuracy after 21
iterations

The next slide show the C program that is used to
solve this problem

The entire computation uses 5.82-10°° seconds on a
Pentium [Il 1GHz processor

Even if this quite fast, even faster algorithms exists.
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#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

doubl e f (double x) { return 2.0+x-exp(Xx);
[+ we define function ’fabs’
i nl i ne doubl e fabs (doubl e

}

for cal cul ati ng absol ute val ues */
r) { return ( (r >=0.0) ?r -r ); }

int main (int nargs, const char** args)

{
doubl e epsilon = 1. Oe- 6;
double a, b, ¢, fa, fc;
a=20.; b=3.;
fa =1f(a);

c = 0.5+(atb);
while (fabs(fc=(f(c))) > epsilon) {
If ((faxfc) < 0) {

b = c;
}
el se {
a = c;
fa = fc;
}
c = 0.5+(atb);
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def bisection(f, a, b, tolerance):

assert (f(a)*f(b) < 0), "lInput does not satisfy ansatz!"

c = 0.5+(a + b)
k =1

points = [c, ]
values = [f(c), ]

while (abs(f(c)) > tolerance):

if f(a)*f(c) < O:
b =c

el se:
a ==«

c = 0.5+x(a + b)

points += [C]
values += [f(cC)]

k += 1

return points, val ues
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Newton’s method

Recall that we have assumed that we have a good
initial guess X, close to x* (where f(x*) = 0)

We will also assume that we have a small region
around x* where f has only one zero, and that f'(x) #0

Taylor series expansion around X = Xg yields
f (%0 +h) = f(x0) +hf (%) + O(h?) (71)
Thus, for small h we have

f(xo+h) = f(x) +hf'(xo) (72)
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Newton’s method

We want to choose the step h such that f(xp+h) ~0

By (72) this can be done by choosing h such that

f(x) +hf (%) =0

Solving this gives

')
f’(Xo)
We therefore define
Xt % Xo+h=x— fxo) (73)

= f'(Xo)
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Newton’s method

We test this on the example studied above with
f(X)=2+x—€‘and xp =3

We have that

f'(x) =1—¢€
Therefore
f (Xo) 5—¢
= Xo — —3—— =22
X1 = Xo (%) 3 < 096
We see that

()| = |f(3)| ~ 15086 and |f(x)|= |f(2.2096)| ~ 4.902

l.e, the value of f is significantly reduced
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Newton’s method

We can now repeat the above procedure and define

def  y. f(x1)

p— f/(Xl) ?
and in algorithmic form Newton’s method reads:

Algorithm 2. Given an initial approximation Xy and a
tolerance e.

X2

(74)

k=0
while | f(x¢)| > € do
o f(Xk)
Xk+1 = Xk — (%)
k=k+1

end
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Newton’s method

In Table 5 we show the results generated by Newton’s
method on the above example.

Kk Xk f (Xk)

1| 2.209583 —4.902331

2 | 1.605246 —1.373837

3| 1.259981 —0.265373

4 | 1.154897| —1.880020 102
5| 1.146248| —1.18361710*
6 | 1.146193| —4.78394510°°

Table 5: Solving the nonlinear equation f(x) = 2+x—€& =0 by
and € = 10°°; the number of iterations k, x, and

using Algorithm
f(Xk).

108
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Newton’s method

* We observe that the convergence is much faster for
Newton’s method than for the Bisection method

* Generally, Newton’s method converges faster than the
Bisection method

e This will be studied in more detall in Project 1
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Example 12

Let
f(X) =x*—2,

and find x* such that f(x*) = 0.

e Note that one of the exact solutions is x* = /2
* Newton’s method for this problem reads

2_2
Xk+1 = Xk — Xk2xk
° Oor
XE + 2
Xk+1 =

X
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Example 12

If we choose xg = 1, we get

X1 = 1.5,
Xo = 1.41667
X3 =1.41422

Comparing this with the exact value
X' =+/2= 141421

we see that a very accurate approximation is obtained in
only 3 iterations.
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An alternative derivation

The Taylor series expansion of f around Xy IS given by
f(x) = f(%0) + (x—X0) '(%0) + O((x—%0)*)
Let Fy(X) be a linear approximation of f around X:
Fo(X) = f(Xo) + (Xx—Xo) f'(X0)
Fo(X) approximates f around Xy since
Fo(xo) = f(%) and  Fo(xo) = f'(Xo)
We now define x; to be such that F(x;) =0, i.e.

f(Xo0) + (X1 —X0) f'(%0) =0
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An alternative derivation

* Then we get

f(Xo)
f'(xo)’

which is identical to the iteration obtained above

X1 =Xo—

* We repeat this process, and define a linear
approximation of f around x;

Fi(X) = f(x0) + (X—X) f'(X1)
* Xy is defined such that F;(x;) =0, i.e.

f(x1)
f'(xq)
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An alternative derivation

e Generally we get

f (%)
f/ (%)

* This process is illustrated in Figure 14

X1 = Xk —
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Figure 14: Graphical illustration of Newton’s method.
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def newton(f, df, y, tolerance):

k =1 # iteration counter
c =y #initial guess

points = [c, ]

values = [f(c), ]

while (abs(f(c)) > tol erance):
c =c¢ - f(c)/df(c)

poi nts += [ ]
values += [f(cC)]
k += 1

return points, val ues

# Define f (want f(x) == 0)
def f(x):
return x + 0. 1xx**3 - 1.

# The derivative of f
def df (x):
return 1 + 3*0. 1*xx**2
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The Secant method

The secant method is similar to Newton’s method, but
the linear approximation of f is defined differently

Now we assume that we have two values xg and X3
close to x*, and define the linear function Fy(x) such
that

Fo(Xo) = (%) and Fy(xp) = f(xp)
The function Fy(x) is therefore given by

F(x) — f(x0)

o) = )+~ —

(X—Xq)
Fo(X) is called the linear interpolant of f
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The Secant method

e Since Fy(Xx) =~ f(x), we can compute a new
approximation X, to x* by solving the linear equation

F(Xz) =0

e This means that we must solve

f(x) — f(X)
X1 — Xo

f(x1)+ (X2 —X1) =0,

with respect to x, (see Figure [15

* This gives

f(X1) (X1 —Xo)
f(x1) — f(xo)
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o T1 To

f(z)

Figure 15: The figure shows a function f = f(x) and its linear
Interpolant F between Xy and x;.
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The Secant method

Following the same procedure as above we get the iteration

o () (% — Xi-1)
Xk+1 = Xk — F (%) _kf (1) ;

and the associated algorithm reads

Algorithm 3. Given two Initial approximations Xy and
X1 and a tolerance Ee.

k=1

while |f(xx)| > € do

(X — Xi—1)
f (%) — f(Xc-1)

Xkr1 = Xk — F(X)

k=k+1
end
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Example 13

Let us apply the Secant method to the equation
f(x) =24+x—€'=0,

studied above. The two Initial values are xg =0, x; = 3, and
the stopping criteria is specified by € = 10°°.

e Table 6 show the number of iterations k, xx and f(xx) as
computed by Algorithm 3

* Note that the convergence for the Secant method is
slower than for Newton’s method, but faster than for
the Bisection method
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K Xk f (%)

2 | 0.186503 0.981475
3 | 0.358369 0.927375
4 | 3.304511| —21.930701
5 | 0.477897 0.865218
6 | 0.585181 0.789865
7 | 1.709760| —1.817874
8 | 0.925808 0.401902
9 | 1.067746 0.158930
10 | 1.160589| —3.122466 102
11| 1.145344| 1.82154410°°
12 | 1.146184| 1.91290810°°
13| 1.146193| —1.19117010°8

Table 6: The Secant method applied with f(x) = 2+ x— e*=0.
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Example 14
Find a zero of
f(X) =x*—2,

which has a solution x* = v/2.
* The general step of the secant method is in this case

Xk — Xk—1
X1 =Xk — T (X
R T ey

Xk — Xk—1

=X — (% —2)
X — X4

X2 — 2

Xk + Xk—1
XkXk—1 + 2




Example 14

e By choosing Xp = 1 and x; = 2 we get

Xo = 1.33333
X3 = 1.40000
X4 =1.41463

* This Is quite good compared to the exact value
X" =2~ 1.41421
* Recall that Newton’s method produced the

approximation 1.41422in three iterations, which is
slightly more accurate
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A nonlinear system

We start our study of nonlinear equations, by considering a
nonlinear system of ordinary differential equations

u = —Vv°, u(0) = U, (75)
vV = U3, v(0) = V.
An implicit Euler scheme for this system reads
Uhr1— U Vhe1 — V
n+At n _ —Vﬁ+1, n+At n _ U§+1a (76)
which can be rewritten on the form
Un+1 _|_At V§_|_1 — Uy = 07 (77)

Vnir —Atug, 1 —Va = 0.
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A nonlinear system

e Observe that in order to compute (un.1,Vne1) based on
(Un,Vh), Wwe need to solve a nonlinear system of
equations

We would like to write the system on the generic form

f(x,y) = 0,
gxy = 0 (78)

f(x,y) = X+Aty’—aq,

gixy) = y—Atx—B, (79)

O = U, and B = v,.
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Newton’s method

When deriving Newton’s method for solving a scalar
equation

p(x) = 0 (80)
we exploited Taylor series expansion

p(xo+h) = p(x)+hp(x)+0(h*), (81)

to make a linear approximation of the function p, and solve
the linear approximation of (80). This lead to the iteration

P

Xer1 = Xe— (82)
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Newton’s method

We shall try to extend Newton’s method to systems of
equations on the form

f(x,y) = 0,
gxy) = O (83

The Taylor-series expansion of a smooth function of two
variables F(x,y), reads

oF oF
F(X+AX,y+4y) = F(x,y)+AX&(x,y)+Aya—y(x,y)

+O(AX?, AXDY, Ay?). (84)
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Newton’s method

Using Taylor expansion on (83) we get

of of

f(Xo+AX, Yo +4y) = f(Xo,yo)+AX&(Xo,yo)+Aya—y(xO,yo)
+0(Dx2, AxDy, Ay?), (85)

and

g(Xo+AX, Yo +4y) = Q(XO,YO)+AX%((X07YO)+AYZ—3(XO,YO)

+O(DMX2, AXDyY, Ay?). (86)

Intensive CourseElements of Scientific ComputiPart I: The Basics — p. 1:



Newton’s method

Since we want Ax and Ay to be such that

Q

f (Xg+ AX, Yo+ Ay)
g(Xo + AX, Yo + Ay)

0,

0 87)

Q

we define Ax and Ay to be the solution of the linear system

f (X0, o) + %55 (%0, Yo) +Ay5; (X0, Yo) = O,

d(%0,Yo) + %52 (X0, Yo) +BY52 (X0, Yo) = O &9

Remember here that Xy and yg are known numbers, and
therefore f(Xo,Y0), 5 (%0, Yo) and (X0, Yo) are known
numbers as well. Ax and Ay are the unknowns.
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Newton’s method

3) can be written on the form

d0fp 0dfg

4
P\

where fO — f(x07y0)1 Jo = g(X07y0)1 % — g_)f((X07y0)’ etc. If the
matrix
0fg 0fg
A = ( o oo ) (90)
0X oy

IS nonsingular. Then

—1
dfg 0fg
AX . aax aay
o do 990
Ay aX ay ive Cours

Inte

fo
. (91)
Jo
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Newton’s method

We can now define

1
i\ _ [ % M\ [ % o fo
Y1 Yo Ay Yo oxX oy Jo

And by repeating this argument we get
fi
, (92
(&) e

—1
= dg 0
Yk+1 Yk a%:( a%(
where fi = f (X, Vi), Ok = 9(%, Yk) and 2 = 9" (x, yi) etc.
The scheme (92) is Newton’s method for the system (83).
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A Nonlinear example

We test Newton’s method on the system

g—e = 0,

In(1+x+y) = 0. (93)

The system have analytical solution x=y = 0. Define

f(X,y) — eX_ey7
gx,y) = In(1+x+y).

The iteration in Newton’s method (92) reads

/ ~1
X1 Xic e — ek gk — gk
— _ 1 1 In(1 (94)
\ yk—l—l yk T+Xe+Yk 14XV n( =+ Xk + yk)
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A Nonlinear example

The table below shows the computed results when
1
Xo = Yo = 5.

Xk Yk
0.5 0.5

-0.193147 | -0.193147
-0.043329 | -0.043329
-0.001934 | -0.001934
—~3.75-10° | —3.75:10°
5| -140-10 " | —1.40-10*

We observe that, as in the scalar case, Newton’s method
gives very rapid convergence towards the analytical

solution x=y = 0.

> WO NP OX
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The Nonlinear System Revisited

We now go back to nonlinear system of ordinary differential
equations (7/5), presented above. For each time step we
had to solve

f(X,y) — O,
axy) = 0 9)
where
f(x,y) = x+Aty>—aq, (96)

gx,y) = y—Atx—B.

We shall now solve this system using Newton’s method.
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The Nonlinear System Revisited

We put Xg = d, Yo = 3 and iterate as follows

—1
X1\ [ % AT fi
— | 9ok dgk ’ (97)

where
fk = T}, Yk), Ok = I(X, Yk);
of  of of  of 3
% ax — (X, Yk) = 1, - dy — (X, Yi) = 30tyg,
agk dg 2 agk dg
aX Gx (Xk yk) 3Ath, ay ay (Xk yk)
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The Nonlinear System Revisited

The matrix

> % 1 3ty
A= ogk 00k — 3AL X2 1 (98)
ox 0y o Xy
has its determinant given by: det(A) = 1+ 9At?x2y2 > 0. So
A1 is well defined and is given by

_ 1 1 —3Atyg

1 K

A" = 555 5 : (99)
1+ 9Atxgcyi \ 3AtX; 1

For each time-level we can e.g. iterate until

[ (X, Vi) | + 19X, Vi) | < € = 10°°. (100)
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The Nonlinear System Revisited

We have tested this method with At =1/100and
t €10,1]

In Figure [16/the numerical solutions of uand v are
plotted as functions of time, and in Figure 17/ the
numerical solution is plotted in the (u,v) coordinate
system

In Figure 18 we have plotted the number of Newton’s
iterations needed to reach the stopping criterion (100)
at each time-level

Observe that we need no more than two iterations at
all time-levels
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Figure 16: The numerical solutions u(t) and v(t) (in dashed line)
of (75) produced by the implicit Euler scheme (76) usingug=1, vo=0
and At =1/100
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Figure 17: The numerical solutions of (75) in the (u,v)-coordinate
system, arising from the implicit Euler scheme (/6) using up = 1,
vo=0and At =1/100
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Figure 18: The graph shows the number of iterations used by
Newton’s method to solve the system (/7)) at each time-level.
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The Method of Least Squares
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The method of least squares

We study the following problem:
Given n points (t,y;) fori=1,...,nin the (t,y)-plane. How
can we determine a function p(t) such that

p(t)~y, for i=1,...,n? (101)
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Figure 19: A set of discrete data marked by small circles is ap-
proximated with a linear function p = p(t) represented by the solid
line.
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Figure 20: A set of discrete data marked by small circles is ap-
proximated with a quadratic function p = p(t) represented by the
solid curve.
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The method of least square

* Above we saw a discrete data set being approximated
by a continuous function

* We can also approximate continuous functions by
simpler functions, see Figure 21 and Figure 22
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Figure 21: Afunction y=y(t) and a linear approximation p= p(t).
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Figure 22: A function y = y(t) and a quadratic approximation p =
p(t).
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World mean temperature deviations

Calendar year

Computational year

Temperature deviation

ti Yi
1991 1 0.29
1992 2 0.14
1993 3 0.19
1994 4 0.26
1995 ) 0.28
1996 6 0.22
1997 7 0.43
1998 8 0.59
1999 9 0.33
2000 10 0.29

Table 7: The global annual mean temperature deviation measured
In °C for years 1991-2000.
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Figure 23: The global annual mean temperature deviation mea-
surements for the period 1991-2000.
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Approximating by a constant

* We will study how this set of data can be approximated
by simple functions

e First, how can this data set be approximated by a
constant function

p(t)=a?

* The most obvious guess would be to choose a as the
arithmetic average

1 10
= — i = 0.312 102

* We will study this guess in more detall

Intensive CourseElements of Scientific ComputiPart I: The Basics — p. 1°



Approximating by a constant

Assume that we want the solution to minimize the
function

10

F(a) = Z(O(—yi)2 (103)

The function F measures a sort of deviation from a to
the set of data (t;,y;)%,

We want to find the a that minimizes F(a), i.e. we want
to find a such that F'(a) =0

We have

10
F'(a) = Z_Z(O(—yi) (104)
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Approximating by a constant

e This leads to

10 ) 10
zi;a - 2i;yi, (105)
or
=

which is the arithmetic average
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Figure 24: A graph of F = F(a) given by (103).
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Approximating by a constant

Since
10
F”(a) — Zzll = 20 > 0O, (107)
=

It follows that the arithmetic average is the minimizer
for F

We can say that the average value is the optimal
constant approximating the global temperature

This way of defining an optimal constant, where we
minimize the sum of the square of the distances
between the approximation and the data, is referred to
as the method of least squares

There are other ways to define an optimal constant
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Approximating by a constant

Define
10

Gla) = Z(O(_Yi)4 (108)

G(a) also measures a sort of deviation from a to the
data

We have that
10
G(a) = 4Z(O(_Yi)3 (109)
| =

And in order to minimize G we need to solve G'(a) =0,
(and check that G"(a) > 0)
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Approximating by a constant

e Solving G'(a) = 0 leads to a nonlinear equation that
can be solved with the Newton iteration from the
previous lecture

* We use Newton’s method with
Initial approximation: ag = 0.312
tolerance specified by: € =108
This gives a* ~ 0.345, in three iterations

e a*is a minimum of G since

G'(a*) = 1220( —Vi)?
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0.3

. A graph of G = G(a) given by (108).
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Figure 26. Two constant approximations of the global annual
mean temperature deviation measurements from year 1991 to 2000.
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Approximating by a linear function

* Now we will study how we can approximate the world
mean temperature deviation with a linear function

* We want to determine two constants a and 3 such that
p(t) = a-+ft (110)

fits the data as good as possible in the sense of least
squares
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Approximating by a linear function

e Define

10

F(a,B) = ;(wsti —Vi)? (111)

* |n order to minimize F with respect to a and 3, we can
solve

oF oF

% = a5~ ° (112)
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Approximating by a linear function

We have that

o = 2Za+st. Vi), (113)

and therefore the condition 3—5 — O leads to

10 10
100t + (Zti) B = i;yi. (114)
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Approximating by a linear function

Here
10
thi = 1+24+3+---4+10 = 55
=
and
10
Zyi = 0.29+0.14+0.19+---+0.29 = 3.12,
|—
SO we have

100 + 553 = 3.12 (115)
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Approximating by a linear function

Further, we have that

oF O
B Z;(O‘Jrﬁti—)ﬁ)ti,

and therefore the condition g—E = 0 gives

(ilzoti> o+ <ilzoti2> B = iyiti.
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Approximating by a linear function

We can calculate
10
Ztiz — 14+2°43°+...410° = 385
=
and
10
Ztiyi — 1.0.29+2-0.14+3-0.19+---+10-0.29 = 20,
=

SO we arrive at the equation

550 + 3853 = 20, (116)
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Approximating by a linear function

We now have a 2 x 2 system of linear equations which
determines a and [3:

10 55 o B 3.12
55 385/ \ B/ 20 |
With our knowledge of linear algebra, we see that
a 10 55\ [/ 3.12
B 55 385 20
1 385 —55 3.12 0.123
825\ _55 10 20 /  \ 0034/’
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Approximating by a linear function

We conclude that the linear model
p(t) = 0.123+0.034 (117)

approximates the data optimally in the sense of least
squares.
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Figure 2 (. Constant and linear least squares approximations of
the global annual mean temperature deviation measurements from
year 1991 to 2000.
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Approx. by a quadratic function

* We now want to determine constants a, 3 and vy, such
that the quadratic polynomial

p(t) = o+ pt+yt? (118)

fits the data optimally in the sense of least squares
* Minimizing

10

F(a,By) = Z<a+ﬁti+vt?—yi>2 (119)

requires

OF OF OF
ba B ay D (120)
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Approx. by a quadratic function

o %:ZZ}Bl(O“FBtI"‘thZ_yI) — Oleads to

100 + CZOE) B+ (2%) y = ilZO|Yi

. S—E:ZZilfl(O(JrBtiertiz—yi)ti — Oleads to

(:Zin) o+ (ilzoti2> B+ (ilzotf’) y = ilzolyiti

o & =2Yi0 (a+Bti+WW —yi)t? = Oleads to

o) (80 () - B

C
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Approx. by a quadratic function

Here
Zt. — 55, it? — 385 gtf” = 3025
th“ = 25330 Zy. = 3.12 Zty. = 20,
_Zt, yi = 1387,
=

which leads to the linear system

10 55 385 o 3.12
55 385 3025 B 20 |. (121
385 3025 25330/ \ vy 1387
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Solving the linear system (121)with, e.g., matlab we get

a ~ —04078
B ~ 0.2997 (122)
y ~ —0.0241

We have now obtained three approximations of the data

e The constant
po(t) = 0.312

e The linear
pl(t) = 0.123+0.034

* The quadratic

P2(t) = —0.4078+0.2997% — 0.0241°
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Figure 28: Constant, linear and quadratic approximations of the
global annual mean temperature deviation measurements from the
year 1991 to 2000.
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Summary

Approximating a data set

(t,yi) 1=1....n,

with a constant function

Po(t) = a.

Using the method of least squares gives

1 n
a = - Yi, (123)
n i;

which is recognized as the arithmetic average.
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Summary

Approximating the data set with a linear function

pi(t) = a+ft
can be done by minimizing

n

minF (a,B) =min’y (pa(t) ~y,)?,

which leads to the following 2 x 2 linear system

[ n iiti\ . [ Sy )

= . (124)

PAPLE ANV PLL
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Summary

A quadratic approximation on the form

Do(t) = o+ Bt+yt?

can be done by minimizing

Ming gy F (a1, B,Y) = ming gy 311 (P2(ti) — ¥i)*, which leads to
the following 3 x 3 linear system

ibia A

iiti iit? iitf’ B | = 2 yiti |. (125)
PAPAPLY |2
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| nport nunpy as np

| mport pyl ab
y = np.array([1.1, 2.1, 3.2, 4.1, 6.4])

t = np.linspace(0,1,5)
pyl ab. pl ot (t,y)

n =1len(t)

tl = sun(t)

t2 = sun(t=*=2)

t3 = sun(t=*=3)

t4 = sun(t=*+4)

A =np.array([[n,t1,t2],[t1,t2,t3],[t2,t3,t4]])

yl = sun(y)

yt = sun(y*t)

yt2 = sun(y=*t*=*2)

b = np.array([yl, yt,yt2])

p = np.linalg.solve(A b)

X = np.linspace(0,1,101);

f = p[2]*x**2 + p[1l]*x + p[O]
pyl ab. pl ot (X, f)

pyl ab. show() Intensive CourseElements of Scientific Computiart |: The

Basics — p. 1



Approximations of Functions

Above we have studied continuous representation of
discrete data

Next we will consider continuous approximation of
continuous functions

Consider the function

y(t) = In (%()sin(t)Jret) (126)

In Figure 29 we see that y(x) seems to be close to the
linear function p(t) =t on the interval |0, 1]

In Figure 30 we see that y(x) seems to be even closer
to the linear function plotted ont € [0, 10
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Figure 29: The function y(t) = In (& sin(t) +€) (solid curve) and
a linear approximation (dashed line) on the interval t € |0, 1].
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Figure 30: The function y(t) = In (& sin(t) +€) (solid curve) and
a linear approximation (dashed line) on the interval t € [0, 10.
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Approximations by constants

For a given function y(t), t € [a,b], we want to compute
a constant approximation of it

p(t) = «a (127)

fort € [a,b], in the sense of least squares
That means that we want to minimize the integral

b b
[ o -yt = [ (a—y)dt

Intensive CourseElements of Scientific ComputiPart I: The Basics — p. 1¢



Approximations by constants

e Define the function

F@) = [ @y (128)

* The derivative with respect to a is

F(a) = 2/:(0( _y(t)) dt

* And solving F'(a) = 0 gives

q = 1 / "y(t)dt (129)
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Note that

* The formula for a is the integral version of the average
of yon [a,b|. In the discrete case we would have written

1 n
a = ﬁi;yh (130)

Ify, in (X30) is y(t;), where t; = a+iAt and At = 22, then

10 1 L [P
— i = —A i)~ —— .
ni;y. 5 a ti;y(t.) b_a/a y(t) dt

We therefore conclude that (129) is a natural
continuous version of (130).
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Note that

e \We used

b
2 [aywra = [*2 @y

Is that a legal operation? This is discussed In
Exercise 5.

* The a given by (129) is a minimum, since

F'(a) = 2(b—a) > 0
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Example 15; const. approx.

Consider
y(t) = sin(t)

defined on 0 <t < 11/2. A constant approximation of y is
given by

7 /2 _
o) = o @22 [Tsinyat = 2 fcost)”
—2 2
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Consider

Example 16; const. approx.

y(t) = t?+ 1—10codt)

defined on 0 <t < 1. A constant approximation of y is given

by

p(t)

a

(1

/01 (t2+ 1—10cos(t)> dt = [%t3+ %sin(t)]:

1 1
5+ 7gsin) ~ 0417
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Approximations by Linear Functions

* Now, we search for a linear approximation of a function
y(t), t € [a,b], i.e.

o(t) = a4 Pt (131)

In the sense of least squares
e Define
b

F.B) = [ (a+Bt-yn)?dt (132

A minimum of F is obtained by finding a and 3 such
that

oF _ OF _,
da OB
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Approximations by Linear Functions

e \We have

oF b
== 2/a (0 + Bt —y(t)) dt

oF :
B 2/a (0 + Bt —y(t) )t t

* Therefore a and 3 can be determined by solving the
following linear system

1 b
(b—a)a+=(b?—ad)p — /y(t)dt
. i a_ (133)
S —a)at (B -a)p = [ tymar
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Example 15; linear approx.

Consider
y(t) = sin(t)
definedon 0 <t < 11/2.
We have
/2
/ sin(t)dt = 1
0
and

/2
/ tsin(t)dt = 1.
0
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Example 15; linear approx.

The linear system now reads
/2 /8 a) (1
/8 T°/24 B/ \1)
The solution is
a) 1 82_24 0.115
B ) Mm@ — =24 0.664 |

Therefore the linear approximation is given by

p(t)

Q

0.115+ 0.664t.

Q
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Example 16; linear approx.

Consider

y(t) = t°+ 110cos(t)

defined on 0 <t < 1. The linear system (133) then reads

1 a B 34—1OSWK1)
B N 3 +&coql) + &sin(l) /)

with solution a ~ —0.059and 3 ~ 0.953
We conclude that the linear least squares approximation is
given by

NI
Wik NI

—0.059+-0.953t.

2

p(t)
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Approx. by Quadratic Functions

* We seek a quadratic function

p(t) = o+Pt+yt? (134)

that approximates a given function y=y(t),a<t <b, in
the sense of least squares

e et

F@By = [ (Bt oy)idt (139

a

e Define a, 3 and y to be the solution of the three
equations:

oF _OF _oF _
oo 0B Iy
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Approx. by Quadratic Functions

e By taking the derivatives, we have

0 b

£ - 2/a (0 + Bt +yt2—y(t)) dt
oF b ,

B 2/a (0 + Bt +yt2 —y(t))tdt
oF

b
AN 2/ (0 + Bt -+ yt2 — y(t)) t2dt
oy a
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* The coefficients a, 3 and y can now be determined
from the linear system
1 3 b

(b—a)a+%(b2—a2)[3+§(b3—a i

N—
<
|
<
/N
r—
N—
(@
—

1 1 1 b

S —@)a+ S0P a@)B (0 —ay = [ty
a

1 1

1103 .3 1.4 4 ZH5_ A5\ b,
(0°— )+ 5 (b —a)B+ Z (b~ )y /ty(t)dt

S
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Example 15; quad. approx.

For the function
y(t) = sin(t), 0<t<m/2,

the linear system reads

n/2 T¢/8 T1/24 o 1
/8 T1/24 T*/64 B | = 1 ,
/24 1T/64 T°/160 Y TT— 2

and the solution is given by a ~ —0.024, 3 ~ 1.196and
v ~ —0.338 which gives the quadratic approximation

p(t) = —0.024+1.196t —0.338t°.
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Example 16; quad. approx.

et us consider
y(t) = t2+icos(t)
10

for 0 <t < 1. The linear system takes the form

1 1/2 1/3 a 1+ 4 sin(1)
1/2 1/3 1/4 B | = | &+3:5c091)+-5sin(1)
1/3 1/4 1/5 Y £ +2coq1)— & sin(1)

and the solution is given by a ~ 0.100, § ~ —0.004and
v ~ 0.957, and the quadratic approximation Is

p(t) = 0.100—0.004t + 0.957t*.
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Figure 31: The function y(t) = sin(t) (solid curve) and its least
squares approximations: constant (dashed line), linear (dotted line)
and gquadratic (dashed-dotted curve).
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Figure 32: The function y(t) = t> 4 2 cogt) (solid curve) and its
least squares approximations: constant (dashed line), linear (dotted
line) and quadratic (dashed-dotted curve).
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| nport nunpy as np
fromscipy.integrate inport quad as integrator

def approximate(f, n, x0, x1):

A = np.zeros((n,n))
b = np.zeros((n, 1))

for i in range(n):
b[i] = integrator(lanbda x: f(x)*x**i, x0, x1)[O0]
for j in range(n):
Ali,j] = integrator(lanbda x: (Xx**i)*x(x*xj),

p = np.linalg.solve(A b)
return p

def f(x):
return np. sin(x)

x0 = 0.
x1 10.
p = approximate(f, 7, x0, x1)
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x1) [ 0]

Basics — p. 2



From Mathematical Formula to
Scientific Software
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Scientific software

e Desired properties
Correct
Efficient (speed, memory, storage)
Easily maintainable
Easily extendible

e |mportant skills
Understanding numerics
Designing data structures
Using libraries and programming tools
(Quick learning of new programming languages)
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A typical scientific computing code

e Starting point
Numerical problem

* Pre-processing
Data input and preparation
Build-up of internal data structure

* Main computation

e Post-processing
Result analysis
Display, output and visualization
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A two-step strategy

e Correct implementation of a complicated numerical
problem is a challenging task

e Divide the task into two steps:
Express the numerical problem as a complete

algorithm
Translate the algorithm into a computer code using

a specific programming language
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Advantages

Small gap between the numerical method and the
complete algorithm (few software issues to consider)

Easy translation from the complete algorithm to a
computer code (no numerical issues)

An effective approach
Easy to debug
Easy to switch to another programming language
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Writing complete algorithms

Complete algorithm = mathematical pseudo code:
programming language independent!

Rewrite a compact mathematical formula as a set of
simple operations (e.g., replace ¥ with a for-loop or
do-loop in Fortran)

|dentify input and output

Give names to mathematical entities and make them
variables/arrays

Introduce intermediate variables (if necessary)
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Optimization; rule of thumb

Adopt good programming habits

Maintain the clear structure of the numerical method
Avoid “premature optimization”

Leave part of the optimization work to a compiler
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Example 20: Simpson’s rule

b
e Want to approximate / f(x)dx
a

* Similar idea as Trapezoidal rule, better accuracy

/ab f (x)dx~ gi{ f(Xi—1) +4f(x_1)+ f(Xi)}

b—a .
e h= T, Xi = a—|-|h, Xi—% — %(Xi—l+)(i)

Intensive CourseElements of Scientific ComputiPart I: The Basics — p. 2:



Complete algorithm (1)

simpson (a, b, f,n)
h— b-a
n
s=0
fori=1,...,n
X~ =a+(i—1)h
X" =a-+ih
X= (X" +x")
S s+ f(x7)+4f(X)+ f(x7)
end for
s+ s
return s

* |nput: a,b, f,n
 Qutput: s
° Intermedlate Varlables X_’ X’ Xn—tensive CourseElements of Scientific Computipart I: The Basics — p. 2:



Efficiency consideration

e f(x")initeration i is the same as f(x ) in iteration i +1

)+ f(X1) +
)+ f(X2) +

f(Xo) +4f(X
f(xy)+4f (X,

NI NI

)+ T (%)

* Unnecessary function evaluations should be avoided
for efficiency!

* Rewrite Simpson’s rule

/f a) + f (b +2Zf +4Zf )
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Complete algorithm (1)

simpson (a, b, f,n)
h = b—a

azgx:a
fori=1,....n—-1
X<+ X+h
S+ S+ F(X)
end for
SS=0x=a+0.5-h
fori=1,...,n
S +— S+ f(X)
X<+ X+h
end for
s=2(f(a)+ f(b) + 25, + 4s,)
return s

e New intermediate
variables s; and s,

e Two for-loops (can
we combine them
Into one loop?)
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Choosing a programming language

* Many programming languages exist

* We examine 7 languages: Fortran 77, C, C++, Java,
Maple, Matlab & Python

* |ssues that influence the choice of a programming
language
Static typing vs. dynamic typing
Computational efficiency
Built-in high-performance utilities
Support for user-defined data types
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Static typing vs. dynamic typing

e Statically typed programming languages
Each variable must be given a specific type
(int, char, float, double etc.)
Compiler is able to detect obvious syntax errors
Special rules for transformation between different
types

* Dynamically typed programming language
No need to give a specific type to a variable
Typing Iis dynamic and adjusts to the context
Great flexibility and more “elegant” syntax
Difficult to detect certain “typos”
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Computational efficiency

e Compiled languages run normally fast

compilation & linking
—

Program code
code)

executable (machine

* |nterpreted languages run normally slow

Statements are interpreted directly as function calls
In a library

Translation takes place “on the fly”

e Different compiled languages may have different
efficiency
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Bullt-in utilities

Compiled languages have very fast loop-instructions

Plain loops in interpreted languages (Maple, Matlab &
Python) are very slow

Important for interpreted languages to have built-in
numerical libraries

Need to “break” a complicated numerical method into a
series of simple steps when using an interpreted
language
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User-defined data types

e Built-in primitive data types may not be enough for
complicated numerical programming
* Need to “group” primitive variables into a new data type
Sstruct in C (only data, no function)
cl ass in C++, Java & Python

Class hierarchies = powerful tool =
object-oriented programming
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Different programming languages

* Different syntax

e Similar structure for main computation
e Different ways for function transfer

e Different I/O

e Different ways for writing comments

* No need to learn all the detalls at once!
e Learn from the examples!
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Vectorization

* Loops are very slow In interpreted languages

e Should use built-in vector functionality when possible

trapezoidal_vec (a,b, f,n)
h— b=a
n
X=(a,a+h,...,b)
v = f(X)

s=h-(sum(v) —0.5- (V1 +Vni1))

return s
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Guidelines on implementation

Understand the numerics (make use of literature)

Close resemblance between mathematical pseudo
code and numerical method

Test the implementation on first problems with known
solutions

No premature optimization before code verification

During later optimization, refer to the “non-optimized”
code as reference for checking
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Diffusion Processes
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Diffusion processes

Examples of diffusion processes

e Heat conduction
Heat moves from hot to cold places

 Diffusive (molecular) transport of a substance
Ink in water
Sugar/Cream in coffee
Perfume/Gas in air

e Thin-film fluid flow
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Diffusion processes

e Diffusion processes smoothes out differences

* A physical property (heat/concentration) moves from
high concentration to low concentration
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One dimension

* For simplicity, we will in the following focus on one
dimensional examples

* This simplifies the complexity of the numerics and
codes, but it would still be realistic in examples with

Long thin geometries

One dimensional variation only
Cylindrical or spherical symmetry
Mathematical splitting of dimension

u(x,y,zt) =F(xt)+ G(y,zt)
or

u(x,y,zt) =F(xt)G(y,zt)
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Figure 33: Diffusion of ink in a long and thin tube. The top figure

shows the initial concentration (dark is ink, white is water). The three
figures below show the concentration of ink at (scaled) timest = 0.25,
t=05t=1, and t = 3, respectively. The evolution is clearly one-

. - Intensive CourseElements of Scientific Computipart I: The Basics — p. 2:
dimensional.



Figure 34: The evolution of the temperature in a medium com-
posed of two pieces of metal, at different initial temperatures. In the
gray scale plots, dark is hot and white is cool. The plots correspond
tot=0,t=0.04,t=0.1, andt =0.5. All boundaries are insulated,
and the temperature approaches a constant value, equal to the av-
erage (Ty + T»)/2 of the initial temperature values.
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The Basics of the Mathematical Model

The diffusion equation reads

ou . d%u
o =k +f(xt), xe€(ab), t>0 (136)

* kis a physical parameter
e Large k implies that u spreads quickly
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Initial and Boundary conditions

Let u be a solution of (136), then for any constant C,
u+C will also be a solution (136)

Thus, there are infinitely many solutions of (136)

In order to make a problem with unique solution we
need some initial and boundary conditions

Initial conditions is that we now the solution initially
u(x,0) for x € [a,b]

Boundary conditions is that we have some information
about the solution at the endpoints u(a,t) and u(b,t)
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Diffusion equation

* |n 3 dimensions the diffusion equation reads

ou ( 0°u 0%u 04U

Ea 0x2+6y2+022

pr ) + f(Xy,z1) (137)

* This equation Is sometimes written on a more compact
form

% — kO%u+ f, (138)

where the operator (¢ is defined by [0%u = % + gi‘; + 32;2’

e [1°is called the Laplace operator
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Initial conditions

In order to solve the diffusion equation we need some initial
condition and boundary conditions.

* The Initial condition gives the concentration in the tube
at t=0

c(x,0) =1(x), xe€(0,1) (139)

* Physically this means that we need to know the
concentration distribution in the tube at a moment to be
able to predict the future distribution
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Boundary conditions

Some common boundary conditions are
* Prescribed concentrations, § and S, at the endpoints

c0t) = and c(Lt)=5

* Impermeable endpoints, i.e. no out flow at the
endpoints

q(0,t)=0 and q(1,t)=0

* By Fick’s law we get

dc(0,t) _0 and dc(1,t)

0X 10)4 =0
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Boundary conditions

* Prescribed outflows Qg and Qq at the endpoints
_q(ovt) — QO and q(lat) — Ql

Here the minus sign in the first expression,
—q(0,t) = Qo, comes since Qp measures the flow
out of the tube, and that is the negative direction
(from right to left)

By Fick’s law we get
dc(0,t)

K FW =Qy and —Kk

dc(1,t)
0X

=Q
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Numerical methods

First we consider a version of the heat equation where any
varying parameters are scaled away:

ou 94U
E—ﬁ—Ff(X,t), XE(O,l), t > 0. (140)

* The solution of this equation is a continuous function of
time and space

* We approximate the solution at a finite number of
space points and at a finite number of time levels

* This approximation is referred to as discretization

* There are several ways of discretizing (140)- in the
following we will consider a technique which is called
the finite difference method
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Numerical methods

Applying the finite difference method to the problem (140)

Implies

1. constructing a grid, with a finite number of points in

(x,t) space, see Figure 35

2. requiring the PDE (1

0)to be satisfied at each point in

the grid

3. replacing derivatives by finite difference

approximations

4. calculating u at the grid points only
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Figure 35: Computational grid in the x,t-plane. The grid points
are located at the points of intersection of the dashed lines.
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Discrete functions on a grid

* Chose a spatial discretization size Ax and a temporal
discretization size At

* Functions are only defined in the grid points

(Xivtﬁ)a

fori=1,....nand £ =0,...,mwhere

nis the number of approximation points in space
(Ax = -55)

m-+ 1 is the number of time levels

* The value of an arbitrary function Q(x,t) at a grid point
(Xi,ty) is denoted

Q' =Q(x,t), i=1,...,n,¢=0,...,m
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Discrete functions on a grid

* The purpose of a finite difference method is to
compute the values uf fori=1,...,nand ¢ =0,...,m

* We can now write the PDE (140)as

0 0°
5 UG t) =25 U(x 1) + (6, t), (141)

1=1,....n,/=1....m
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Finite difference approximation

Now we approximate the terms in (141)that contains
derivatives. The approximation is done as follows

* The right hand side is approximated

0 ut—uf
—u(x,t) ~ = | 142
ot Y06 1) At (142)
* The first term on left hand side is approximated
0° u_, —2u’ +uf
s : t ~ -1 I 1+1 143
GXZU(X" 0) v (143)

* The first approximation (142) can be motivated directly
from the definition of derivatives, since At is small, and
It Is called a finite difference approximation
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Finite difference approximation

The motivation for (

[43)1s done In two steps and the finite

difference approximation is based on centered difference

approximations.

* We first approximate the“outer” derivative at x = x; (and
t =1t,), using a fictitious point x; 1 =% + 20X to the right

and a fictitious point Xi_1 =X —

23]~

1

AX

ﬁl

@r .
OX i1

2AX to the left

@ /
10)4 i1

2
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Finite difference approximation

* The first-order derivative at x; L1 can be approximated

by a centered difference using the point x;, 1 to the right
and the point x; to the left:

@ : ~ ui£+1_ui£
10)4 AX

i+3

* Similarly, the first-order derivative at x,_; can be

approximated by a centered difference using the point
X; to the right and the point x,_; to the left

a_X ;% AX

2

[aur u —uf

® Comblﬂlng these flnlte differenceeisCgljssé%tsm;i)ComputmgrtI:The Basics — p. 2



The Finite Difference Scheme

* Inserting the difference approximations (142) and (143)
In (141)results in the following finite difference scheme

ig—i_l o uig _ uig—l o ZUIE T uig—l—l 4 fif (144)
At AX2

u

* We solve (144)with respect to uf+1 yielding a simple
formula for the solution at the new time level

At
Hl=u+— (U_;— 20 +u ;) + At (145)

u
AX?

e This is referred to as a numerical scheme for the
diffusion equation

Intensive CourseElements of Scientific Computipart I: The Basics — p. 2



t
S U S S Y N S
At o
, L 000
A O O S S S S S
o XAXX - X

X % K XK X X X % X Ko

Figure 36: lllustration of the updating formula (I45) ug is com-
puted from uz, uz, and uz.
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new time level

previous time leve

__________________________________________________________

A X

Figure 37 lllustration of the computational molecule correspond-
ing to the finite difference scheme ([145). The weight sis At /Ax°.
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Incorporating Boundary Conditions

e (145)can not be used for computing new values at the
boundary u;™ and u5™, because (145)for i = 1 and
i = ninvolves values u’ ; and u,, ; outside the grid.

* Therefore we need to use the boundary conditions to
update on the boundary u{™ and u;™!
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Dirichlet Boundary Condition

e Suppose we have the following Dirichlet boundary

conditions

U(O,t) — gO(t)a

U(l,t) — gl(t)v

where go(t) and g;(t) are prescribed functions

* The new values on the boundary can then be updated

by
U™ = go(try 1),

uh™ = ga(tea)

e The numerical scheme (1

Y

))update all inner points
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Algorithm 1. Diffusion equation with Dirichlet bound-
ary conditions.

Set initial conditions:

u’=1(x), fori=1,...,n
for(=0,1,...,m
e Update all inner points:

041 At

= U +—5 (U_; —2u{ + U ) +Atf

u
NAX?

fori=2,....n—1

* |nsert boundary conditions:

U™ = go(trr1), UG =ga(tei)
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Neumann Boundary Conditions

Assume that we have Neumann conditions on the problem

0 i,
a—xu(O,t)_ho and a—xu(l,t)_hl

9

Implementing the first condition, o

as follows

u(0,t) = hg, can be done

* We introducing a fictisous value uj

* The property a%u(O,t) can then be approximated with a
centered difference
u5 — ug
—h
20X °
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Neumann Boundary Conditions

* The discrete version of the boundary condition then
reads

Up — U
=h 146
D, (146)

or

Uy = U5 — 2hg/AX

e Setting i = 1in (145), gives

At
Uit = Ul + —5 (Ug— 2uf +u5) + f;

= U + 5 (U5 — 2hoAX— 2u] + U5) + f4
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Neumann Boundary Conditions

* We now have a formula for updating the boundary
point

At

(+1 z / /

* For the condition aixu(l,t) = h;, we can define a
fictitious point U,

e Similar to above we can use a centered difference

approximation of the condition, use (145)with | = n and
get

At
Uy™ = U+ 255 (Un 1 — Un + ) + (147)
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Algorithm 2.
boundary conditions.
Set initial conditions:

uiozl(xi)a
for(=0,1,...,m

e Update all inner points:
At

utt=u +— A (U_q —2u{ + U ) +Atf
fori=2,...,n—1
* |nsert boundary conditions:
ut =l + e (U — holAX) + f;
1 — Y1 AXZ 2 0 1
(+1 _ At 0 ¢
Uy = U+ 2—5 (Up_q — Uy + hAX) + £

Diffusion equation with Neumann

fori=1,...,n
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Implementation

We study how Algorithm 1 can be implemented in Python
* Arrays in Python has zero as the first index

* We rewrite Algorithm 1 so that the index i goes from O
ton—1

 That is, we change i withi1—1
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Implementation

In Algorithm 1, we see that we need to store n
numbers for m+ 1 time levels, i.e. n(m+ 1) numbers in
a two-dimensional array

But, when computing the solution at one time level, we
only need to have stored the solution at the previous
time level - older levels are not used

So, iIf we do not need to store all time levels, we can
reduce the storage requirements to 2n in two
one-dimensional arrays

Introducing u; for u'™* and u;” for u’, we arrive at the

mathematical pseudo code presented as Algorithm 3
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Algorithm 3. Pseudo code for diffusion equation with
general Dirichlet conditions.
Set initial conditions:

u =1(x), fori=0,....n—-1
for{=0,1,....m:

e Seth= 2L andt = /At

Ax2
e Update all inner points:
U =u +h(u —2u +u_ ;) +Atf(x,t)
fori=1,....n—2
* |nsert boundary conditions:
Uo=0o(t), Un-1=0u(t)

e Update data structures for next step:
u =u, I =0,...,n—1
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def diffeq(l, f, g0, g1, dx, dt, m action=None):

n =
X =

int(1/dx + 1) h = dt/(dxxdx) # help variable in the schene
arrayrange(0, 1+dx/2, dx, Float) # grid points in x dir

user _data =[] # return values fromaction function
# set initial condition:
um = | (x)

u =

for

zeros(n, Float) # solution array

| in range(mtl): # 1=0,...,m

t = I xdt

# update all inner points:

for i inrange(l,n-1,1): #i=1,...,n-2

uf[i] =unfi] + hx(unfi-1] - 2*unfi] + unfi+1]) + dt*f(x[i],
# insert boundary conditions:
u[0] = go(t); wu[n-1] = gi(t)

# update data structures for next step:
for i in range(len(u)): unfi] = uf[i]
i f action is not None:
r = action(u, x, t) # sone user-defined action
if r is not None:
user data.append(r) # r can be arbitrary data...

return user_data
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Comments

* The functions f, gg, and g; are given as function
arguments for convenience

* We need to specify each array element in the solution
U to be a floating-point number, otherwise the array
would consist of integers. The values of U are of no
Importance before the time loop.

« The act 1 on parameter may be used to invoke a
function for computing the error in the solution, if the
exact solution of the problem is known, or we may use
it to visualize the graph of u(x,t). The act 1 on
function can return any type of data, and if the data
differ from None, the data are stored in an array
user dat a and returned to the user.
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Verifications

* A well known solution to the diffusion equation is
u(x,t) = e sinmx, (148)

which is the solution when f =0 and | (x) = sinTx and
the Dirichlet boundary conditions are go(t) = 0 and

gi(t)=0
e \We shall see how this exact solution can be used to
test the code

* |In Python the initial and boundary conditions can
specified by

def 1C 1(x): return sin(pi*x)
def g0 _1(t): return 0.0
def gl 1(t): return 0.0
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Verifications

* We can now construct a function conpar e_1 as

act i on parameter, where we compute and return the
error:

def error_1(u, x, t):
e = u - exactsol 1(x, t)
e norm = sqrt(innerproduct(e,e)/len(e))
return e_norm

def exactsol 1(x, t): return exp(-pi=*pi*t)=*sin(pi=*x)

e The € _nNoOr mvariable computes an approximation to
the a scalar error measure

[ @ upax

where U denotes the numerical solution and u is the
exact solution
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Verifications

* We actually computes a Riemann approximation of this
Integral since

1 n—1

£2 _ /01(0_ u)2dx ~ :]quzAx: —1 ;QZ»

where
g = U — exp(—TP4AL) SiN(TIAX)
(the code divide by n instead of n— 1, for convenience)

e The final callto di f f eq reads

e =diffeq(lC1, fO, g0 1, gl 1, dx, dt, m action=error_1)
print "error at last tine level:", e[-1]
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Verifications

Theoretically, it is known that
E = CLAX + CoAt
Choosing At = DAX? for a positive constant D, we get
E=C;Ax?>, C3=C;+C,D

Hence, E /Ax? should be constant

A few lines of Python code conduct the test

dx = 0.2
for counter in range(4): # try 4 refinements of dx
dx = dx/2.0; dt = dxxdx/2.0; m=int(0.5/dt)
e =diffeq(lC1, fO, g0 1, g1 1, dx, dt, m action=error_1)
print "dx=%2g error=%d2g ratio=%g" % (dx, e[-1], e[-1]/(dx*dx)
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Verifications

* The output becomes

dx= 0.1 error= 0.000633159 rati0=0.0633159
dx= 0.05 error= 0.00016196 ratio=0.0647839
dx= 0.025 error= 4.09772e-05 rati o0=0.0655636
dx= 0.0125 error= 1.03071e-05 ratio0=0.0659656

e This confirms that E ~ Ax?
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from nunpy i nport
| nport pyl ab

def solve(l, f, g0, g1, T, m L, n):

| i nspace, zeros, exp, sin, pi

dx = L/(n-1.) # n unknowns, n-1 intervals of |ength dx.
dt = 1.*T/m
al pha = dt/dx*=*2;

Xx = linspace(0, L, n);
u_new=zer os(n)
u=I ( x)

i m= range(0, n-2);
i = range(1,n-1);
i p = range(2,n);

for I in range(n:
t = (I+1)=*dt
# i nner nodes
unewi] =u[i] + alphax(u[ip]-2+«u[i]+u[im) + dt*f(t,x[i])
# boundary conditions
u new 0] = gO(t)
u new n-1] = gl(t)

# copy solution Intensive CourseElements of Scientific ComputiPart I: The

Basics — p. 2t



The Heat Equation
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The Heat Equation

We study the heat equation:

U = Uy forxe (0,1),t >0, (149)
u(o,t) =u(1,t)=0 fort >0, (150)
u(x,0) = f(x) forxe(0,1), (151)

where f Is a given initial condition defined on the unit
interval (0,1). We shall in the following study

e physical properties of heat conduction versus the
mathematical model (149)-(151

e analyze the stability properties of the explicit numerical
method
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Energy arguments

We define the “energy” of the solution u at a time t by

1
El(t):/ u?(x,t)dx fort > 0. (152)
0

Note that this is not the physical energy

This “energy” is a mathematical tool, used to study the

behavior of the solution

We shall see that E;(t) is a non-increasing function of

time
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Energy arguments

* |f we multiply the left and right hand sides of the heat

equation (14

9

by u it follows that

uu=uwu forxe (0,1),t>0

e By the chalin rule for differentiation we observe that

e Hence

10

0 ,
—Uu° = 2u
pr “

—_—ur=upu forxe (0,1),t>0

20t
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Energy arguments

* By integrating both sides with respect to x, and
applying the rule of integration by parts, we get

%/Olguz(x,t)dx = /Oluxx(X,t)u(x,t)dx (153)
Uy (1,t)u(1,t) — uk(0,t)u(0,t)
—/Olux(x,t)ux(x,t)dx

1
— —/ uz(x,t)dx fort >0,
0

where the last equality is a consequence of the
boundary condition (150)
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Energy arguments

* We assume that u is a smooth solution of the heat
equation, which implies that we can interchange the
order of integration and derivation in , that is

0

1 1
E/ uz(x,t)dx:—Z/ u)z((x,t)dx fort >0  (154)
0 0

e Therefore
1
Ei(t) = —2/ u(x,t)dx fort >0
0

* This implies that
E1(t) <0

Intensive CourseElements of Scientific ComputiPart I: The Basics — p. 2



Energy arguments

* Thus E; Is a non-increasing function of time t, I.e.,
El(tz) < El(tl) for all to>t, >0

* |n particular

1 1 1
/uz(x,t)dng u?(x,0)dx = /fz(x)dx
0 0 0
fort > 0(155)
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Energy arguments

* This means that the energy, in the sense of E;(t), is a
non-increasing function of time

* The integral of uZ with respect to x, tells us how fast the
energy decreases
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Maximum principles

A smooth solution of the problem (149)(151)
must satisfy the bound

m<u(x,t) <M forallxe[0,1],t >0, (156)

where

m=min (mingl(t), ming,(t), min f(x)), (157)

t>0 t>0 x€(0,1)

M = maX<rp>%xg1(t), maxga(t), max f(X)) -
(158)
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Stability analysis of the num. sol.

* We shall now study the stability properties of the
explicit finite difference scheme for heat equation
presented earlier

* As above, the discretization parameters are defined by

T 1
At=— and Ax=——,
m n—1

and functions are only defined in the gridpoints

U = u(x,t,) = u((i — DAX, ¢AL)
fori=1,....nand ¢/=0,...,m
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Stability analysis of the num. sol.

e The numerical scheme is written

At
u = +Ax2( U —2uf Ul )
=au_ ;4 (1—20)u +auf,, (159)

fori=2,...n—1and ¢/=0,....m—1, where

At

 Boundary conditions are uy=u; =0for/=1,...,m

* We shall see that this numerical scheme is only
conditionable stable, and the stability depends on the
parameter a
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Example 29

Consider the following problem

U = Uy forxe (0,1),t>0,
u(o,t) =u(1,t)=0 fort >0,
u(x,0) =sin(3rx) for xe (0,1),

with the analytical solution

u(x,t) = e " sin(3mx).

In Figures i38-40 we have graphed this function and the
numerical results generated by the scheme (159) for
various values of the discretization parameters in space
and time. Notice how the solution depends on a.
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Figure 38: The solid line represents the solution of the problem
studied in Example 29. The dotted, dash-dotted and dashed lines
are the numerical results generated in the cases of n=10and m=17
(a =0.4769H5, n=20and m= 82 (a = 0.4402, n=60 and m= 706
(a = 0.4931), respectively.
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Figure 39: The dashed line represents the results generated by
the explicit scheme (159) in the case of n =60 and m= 681, corre-
sponding to a = 0.5112 in Example 29. The solid line is the graph of
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Figure 40: A plot of the numbers generated by the explicit

scheme

7

159

, with n =60 and m= 675, in Example 29. Observe

that a = 0.5157> 0.5 and that, for these discretization parameters,
the method fails to solve the problem under consideration!
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Analysis

We have observed that the explicit scheme (159
works fine, provided that a <1/2

For small discretization parameters At and Ax, it seems
to produce accurate approximations of the solution of
the heat equation

However, for a > 1/2 the scheme tends to “break
down”, I.e., the numbers produced are not useful. Our
goal now is to investigate this property from a
theoretical point of view

We will derive, provided that a < 1/2, a discrete
analogue to the maximum principle

Note that, for (149)-(151), the maximums principle
Implies
lu(x,t)| <max|f(x)| forallxe (0,1)andt>0
X
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Analysis

Assume that At and Ax satisfy

L1
A2 T2

Then
1-2a>0 (161)

We introduce

u* = max|u’| forf=0,...,m
|
Note that
0° = max| f(x)|
|
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Analysis

e Recall that u™ = au’_; + (1—20)uf +auf, ,
* |t now follows from the triangle inequality that

ui au_; + (1— 200)uf + o4 |

au_ |+ |(1— 200U | + |our, 4

alu_4|+ (1—20)|u| +auf, 4

au’ + (1—20) 0 +adf

u (162)

VAN

VAN

fori=2,....n—1

e Note that
U§_+1 _ uf]—l-l _ O
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Analysis

* Since (162)isvalidfori=2,...,n—1, we get

max|u’ | < Of
I

* Or
L_If+1<af

* Finally, by a straightforward induction argument we
conclude that

U < 0° = max| f (x)]
I
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Analysis

Assume that the discretization parameters At
and Ax satisfy

At 1
= — <. 1
. AX2 — 2 (163)
Then the approximations generated by the ex-
plicit scheme (159) satisfy the bound

max|u’| < max|f(x)| for¢=0,....m (164)
I |

where f Is the initial condition in the model prob-
lem (149)-
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Consequences

For a given n, m must satisfy
m> 2T (n—1)?

Hence, the number of time steps, m, needed increases
rapidly with the number of grid points, n, used in the
space dimension

If T =1and n= 101, then mmust satisfy m> 2000Q

and in the case of n=1001at least 2- 10° time steps
must be taken!

This Is no big problem in 1D, but in 2D and 3D this
problem may become dramatic
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