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SUMMARY

Non-physical pressure oscillations are observed in finite element calculations of Biot’s poroelastic equations in
low-permeable media. These pressure oscillations may be understood as a failure of compatibility between the
finite element spaces, rather than elastic locking. We present evidence to support this view by comparing and
contrasting the pressure oscillations in low-permeable porous media with those in low-compressible porous media.
As a consequence, it is possible to use established families of stable mixed elements as candidates for choosing
finite element spaces for Biot’s equations. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

The coupled poroelastic equations due to Biot [1] describe the behaviour of fluid-filled porous materials
undergoing deformation. It is well known that the finite element solution of these equations may exhibit
unphysical oscillations in the fluid pressure under certain conditions — low permeabilities, early times
(shocks), and short time steps [2, 3, 4]. For the practitioner it is important to know why non-physical
oscillations may occur and how to avoid them. This is the research problem we address in the present
paper.

Several methods have been proposed to remove the spurious pressure oscillations. Murad et al. [4, 5]
considered the displacement/fluid pressure (two-field) form of Biot’s equation, and identified the initial
state (early times) consolidation problem as an instance of the Stokes saddle-point problem, with an
associated inf-sup stability test. They developed short- and long-term error bounds for some continuous
pressure elements. In particular, they found that the oscillations decay in time and may be treated by
post-processing even with unstable element combinations. Wan [6] employed a stabilised finite element
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method, based on the Galerkin least-squares method, on the two-field and the displacement/fluid
velocity/fluid pressure (three-field) formulations. Wan pointed out that the oscillations do not decay,
and may even be amplified, under different assumptions, in particular in heterogeneous materials with
low-permeable layers. Another stabilisation method was proposed by Aguilar et al. [7], who employ a
perturbation term depending only on a priori material and grid parameters.

More recently, least-squares mixed finite element methods for the stress tensor/displacement/fluid
velocity/fluid pressure four-field formulation have been proposed by Korsawe and Starke [8] and
Tchonkova et al. [9]. These methods have elliptic variational representations and hence appear to be
naturally stable.

Phillips and Wheeler [10] investigated the same three-field variant of Biot’s equation as Wan, and
identified the oscillation phenomenon for short time steps and early times as related to (in-)elastic
locking, observed in linear elasticity [11]: The reduction of effective degrees of freedom (owing to
vanishing divergence) “locks” the displacement solution.

In the present paper, we investigate the characteristics of the poroelastic fluid pressure oscillations
and compare them to those of elastic locking and inf-sup violation. The similarity with the solid
pressure oscillations in elasticity is investigated, in part through a mathematical analogy with the
elasticity problem and in part through extending the two- and three-field poroelastic formulations to
mixed formulations which includes the solid pressure. The addition of a solid pressure field is known
to overcome the locking problem in pure elasticity.

Our idea is to link the fluid pressure oscillations to a violation of the compatibility requirements
for the discrete finite element spaces. Careful investigations performed in the paper support the view
that these phenomena are related. We can then draw upon a large body of knowledge regarding stable
spaces for saddle-point problems. This approach helps us to formulate hypotheses about stable mixed
finite elements for two-, three-, and four-field formulations of poroelasticity. We test the validity of
the hypotheses through extensive numerical experiments. The results form a body of evidence for our
goal of giving practitioners a range of choices for the robust solution of Biot’s equations, whether the
requirement is a fast solver (which might use a two-field formulation with the minimal-order stable
elements) or higher-order accuracy.

2. The mathematical model

The equations describing poroelastic flow and deformation are derived from the principles of
conservation of fluid mass and the balance of forces on the porous matrix. The linear poroelastic
equations can, in the small-strains regime, be expressed as

Sṗf −∇ ·Λ∇pf + α∇ · u̇ = q, (1)
∇(λ+ µ)∇ · u+ ∇ · µ∇u− α∇pf = r. (2)

Here, r represents the total body forces, and q is a fluid injection rate. The primary variables are pf
for the fluid pressure and u for the displacement of the porous medium. Furthermore, S and Λ are
the fluid storage coefficient and the flow mobility respectively, α is the Biot-Willis fluid/solid coupling
coefficient, and λ and µ are the Lamé elastic parameters.

The fluid (Darcy) velocity is often of particular interest in poroelastic calculations. It can be written

vD = −Λ(∇pf − rf), (3)
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2 J. B. HAGA ET AL.

and represents the net macroscopic flux, given body forces rf acting on the fluid phase. For the
displacement equation, the main secondary quantity of interest is the effective stress tensor,

σ′ = σ − αpfI = (λTr ε− αpf)I + 2µε, (4)

which is written in terms of the small-strains tensor

ε = (∇u+ ∇uT)/2. (5)

In the following, this canonical form of Biot’s equation given in Equations (1)–(2) is referred to as
the two-field formulation.

Weak discrete-in-time form. We employ a first-order backward finite difference method in time, which
leads to the discrete-time form of Equation (1)

Spf −∆t∇ ·Λ∇pf + α∇ · u = q∆t+ Sp̂f + α∇ · û. (6)

Hatted variables (p̂f, û) indicate values from the previous time step, while unmarked variables are taken
to be at the current time step.

Next, we rewrite Equation (2) and (6) in weak form, using integration by parts to eliminate second
derivatives. We define the following (bi-)linear forms on the domain Ω with boundary Γ,

aI
f(φf, pf) = −

∫
Ω
Sφfpf + ∆t∇φf ·Λ∇pf dΩ,

bI(φf,u) = −
∫

Ω
αφf∇ · udΩ,

lIf(φf) = −
∫

Ω
(q∆t+ Sp̂f + ∇ · û)φf dΩ +

∫
Γ
φf(fn − n ·Λrf)∆tdΓ,

(7)

and
aI

u(φu,u) =
∫

Ω
[λ(∇ · φu)(∇ · u) + µ∇φu : ∇u] dΩ,

lIu(φu) = −
∫

Ω
φu · r dΩ +

∫
Γ
φu · tn dΓ.

(8)

The problem then becomes: Find pf ∈ Vf and u ∈ V u that satisfy the following relations:

aI
f(φf, pf) + bI(φf,u) = lIf(φf) ∀φf ∈ Vf, (9)

aI
u(φu,u) + bI(pf,φu) = lIu(φu) ∀φu ∈ V u. (10)

The normal flux fn = vD · n and normal stresses tn on the boundary Γ appear in these equations
as natural boundary conditions. We note that Equations (9)–(10) form a symmetric, but indefinite,
system of equations,† which can in principle be solved either iteratively or simultaneously (fully
coupled). Dean et al. [12] finds the fully coupled method to be most efficient in a case with strong
hydromechanical coupling, and in our experiments we have observed very slow convergence of
iterative methods in problems with high permeability contrasts. Hence, we shall only consider the
fully coupled method in the following.

The natural spaces for the continuous problem are Vf = H1 (or L2 when Λ = 0) for the pressure
and V u = H1 for the displacement. The discrete finite element approximation follows from solving
the equations for the weak form in finite-dimensional spaces. We shall return later to the question of
discrete spaces.

†Symmetric because the trial (pf, u) and test (φf, φu) functions are interchangeable; indefinite because aI
f is negative definite

while aI
u is positive definite.
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2.1. Three-field (fluid velocity) formulation

In many applications of the poroelastic equations, the flow of the fluid through the medium is of primary
interest. However, due to the differential operator acting on the pressure pf, the flow is of lower accuracy
than the pressure itself. Furthermore, the derivative is not continuous between elements, and hence the
fluid mass is not in general conserved. A natural extension is then to introduce vD as an extra primary
variable in a mixed finite element formulation. The order of accuracy is higher, and mass conservation
for the fluid phase can be ensured by using continuous elements for vD.

By inserting the relation for fluid flux, Equation (3), into Equation (1), we get a coupled system of
three equations (of which two are vector equations). The equations for fluid flux and pressure are

Sṗf + ∇ · vD + α∇ · u̇ = q, (11)

Λ−1vD + ∇pf = rf, (12)

and these are coupled with the unmodified Equation (2) for solid displacement. We shall call this the
fluid velocity three-field formulation.

Weak discrete-in-time form. We define the following additional forms:

aII
f (φf, pf) = −

∫
Ω
Sφfpf dΩ,

bII(φf,vD) = −
∫

Ω
pf∇ · vD dΩ∆t,

lIIf (φf) = −
∫

Ω
(q∆t+ Sp̂f + ∇ · û)φf dΩ,

(13)

which are derived from Equation (11), and

aII
v (φv,vD) =

∫
Ω
φv ·Λ−1vD dΩ∆t,

cII(φv, pf) =
∫

Γ
(φv · n)pf dΓ∆t,

lIIv (φv) =
∫

Ω
φv · rf dΩ.

(14)

from Equation (12). The solution is then given as (u, pf,vD) ∈ V = V u × Vf × V v satisfying

aII
f (φf, pf) + bI(φf,u) + bII(φf,vD) = lIIf (φf) ∀φf ∈ Vf, (15)

aII
v (φv,vD) + bII(pf,φv) + cII(φv, pf) = lIIv (φv) ∀φv ∈ V v, (16)

along with Equation (10) for the displacement.
The displacement space is the same as in the two-field formulation, while the pressure space is

always L2 (in the two-field formulation, this is the case only when Λ = 0). Additionally, we define the
fluid velocity space as V v = H(div)‡. We note that the system is symmetric only when cII = 0; this
is achieved when the whole boundary has either zero fluid pressure or zero fluid flux conditions (and
the spaces Vf and V v are restricted accordingly).

2.2. Three-field (solid pressure) formulation

In the field of (pure) elasticity, it is well understood that a low-compressible material (with Poisson’s
ratio close to 0.5) leads to unphysical oscillations in the solid pressure field, and in some cases also to

‡L2 ⊃H(div) = {v ∈ L2 |∇ · v ∈ L2} ⊃H1 = {v ∈ L2 |∇v ∈ L2}

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 0:0–0
Prepared using nagauth.cls
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a wrong solution for the calculated displacement. This can be explained by λ becoming very large in
Equation (2), leading to the requirement that ∇ ·u→ 0. When this requirement is applied to standard
finite elements, several degrees of freedom become “locked”, leaving too few degrees of freedom to
represent the correct solution.

One way to overcome this obstacle is to introduce a new primary variable for the solid pressure. We
define the (incomplete) solid pressure as

ps = −λ∇ · u, (17)

whereby Equation (2) can be rewritten as the coupled equations,

∇µ∇ · u+ ∇ · µ∇u−∇ps − α∇pf = r, (18)

λ−1ps + ∇ · u = 0, (19)

and combined with Equation (1) for the fluid pressure. This definition of the solid pressure makes the
equation simpler than when using the volumetric solid stress, ps = −σvol = −(λ + 2

3µ)∇ · u, while
still including the “difficult” part of the pressure.

The three-field (solid pressure) formulation can be used with low-compressible or even
incompressible materials.

Weak discrete-in-time form. The additional variational forms associated with Equations (18)–(19) are

aIII
u (φu,u) =

∫
Ω
µ∇φu : ∇udΩ,

aIII
s (φs, ps) =

∫
Ω
λ−1φsps dΩ,

bIII(φs,u) =
∫

Ω
φs∇ · udΩ,

(20)

and the solution is given as (u, ps, pf) ∈ V u × Vs × Vf satisfying

aIII
u (φu,u) + bI(pf,φu) + bIII(ps,φu) = lIu(φu) ∀φu ∈ V u, (21)

aIII
s (φs, ps) + bIII(φs,u) = 0 ∀φs ∈ Vs, (22)

along with the original equation for the fluid pressure, Equation (9). The continuous spaces are as in
the two-field formulation, with the addition of the solid pressure space Vs = L2.

2.3. Four-field formulation

Combining the three-field formulations of fluid velocity and solid pressure, we get a formulation of two
scalar and two vector fields which attains accurate fluid velocities, and which is stable in the presence of
low-compressible materials. The formulation is obtained as the coupled system of Equations (11)–(12)
and (18)–(19), as

Sṗf + ∇ · vD + α∇ · u̇ = q, (23)

Λ−1vD + ∇pf = rf, (24)
∇µ∇ · u+ ∇ · µ∇u−∇ps − α∇pf = r, (25)

λ−1ps + ∇ · u = 0, (26)

Weak discrete-in-time form. The weak form of the four-field formulation is: Find (u,vD, pf, ps) ∈
V u × V v × Vf × Vs such that Equations (15)–(16) and Equations (21)–(22) are satisfied.
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(b) Oscillatory solution to the two-material problem
with uniform load; F = 1, ε = 10−8, ∆t = 1.

Figure 1: Domain for illustrating pressure oscillations. On the sides and bottom, no-flux conditions are
imposed so that no fluid or solid movement is allowed in the normal direction. The top is drained with
fluid pressure pf = 0 and an applied normal stress. Spurious pressure oscillations are clearly present in
(b) — the analytical solution is constant σ′vol = 1.

3. On the causes of pressure oscillations

It is well known that spurious fluid pressure oscillations may occur in low-permeable regions in finite
element calculations of the poroelastic equations [10, 13, 14]. To illustrate this phenomenon, we use a
simple test case where a low-permeable layer is placed inside a “normal” material, shown in Figure 1a.
The low-permeable layer uses Λ = εI for some ε� 1, while the “normal” layer has unit permeability.
In all three layers, the elastic parameters are set to λ = µ = 1. The boundary conditions at the sides
and bottom are no-flux for both the fluid and the solid,

fn|Γ0
= 0, u · n|Γ0

= 0, (27)

while the top boundary is drained, with an applied normal force

pf|Γ1
= 0, tn|Γ1

= F (x)n, (28)

where F (x) is constant 1 for the present. No body forces are present, and the initial conditions are
u = 0 and pf = 0 with ∆t = 1.

Figure 1b shows the naïve numerical solution to the two-material test case when ε is very small,
computed with the two-field formulation using first order quadrilateral elements (Q1/Q1)§. The
pressure oscillations in the middle layer clearly have no physical basis, nor are they present in the
analytical solution to the problem.

§Elements are listed in the order ups/vDpf, where any unused position for a particular formulation is skipped. Hence, the
two-field formulation uses u/pf, fluid velocity three-field uses u/vDpf, and solid pressure three-field uses ups/pf.
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(a) The Barry-Mercer problem.
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(b) Oscillatory solution to the Barry-Mercer problem,
with ε = 10−8, ∆t = 0.01.

Figure 2: The Barry-Mercer problem consists of a pulsating pressure point source embedded in a
uniform porous material which is drained on all sides, with zero tangential displacement. Pressure
oscillations are clearly visible when using Q1/RT1Q0 elements.

Studying the fluid velocity three-field formulation, Phillips and Wheeler [13] argue that such
pressure oscillations have the same cause as the phenomenon known as locking in pure elasticity. To
see why, we consider that the basic linear elastic equation is just Equation (2) without the fluid pressure
term,

∇(λ+ µ)∇ · u+ ∇ · µ∇u = r. (29)

Elastic locking occurs when finite elements are asked to reproduce a displacement field that is nearly
divergence free, as λ → ∞ corresponds to ∇ · u → 0. Satisfying this with standard (low-order
piecewise polynomial) finite elements locks out many of the degrees of freedom, to the extent that only
constant displacement fields can be represented. More commonly, the error in displacement is seen to
cause nonphysical oscillations in the solid pressure (ps → ps = −λ∇ · u). This is because the errors
in ∇ · u ≈ 0 are magnified by a very large factor λ in the post-process calculation of the volumetric
stress.

The argument by Phillips and Wheeler is that under certain conditions the same happens in
poroelasticity. Consider Equation (1) with uniform permeability, discretised in time with time step
∆t and with S = q = 0. Assume furthermore that we take one time step from a divergence-free initial
state, which is quite normal at the start of a simulation (when u = 0). Then, Equation (1) reduces to

∇ · u = ∆t∇ ·Λ∇pf/α, (30)

The right-hand side becomes very small for short time steps and low permeabilities. Again, the
requirement for a nearly divergence-free solution for the displacement u appears. Fluid pressure
oscillations are demonstrated in (among others) the Barry-Mercer problem (shown in Figure 2a), using
the three-field formulation with lowest-order Raviart-Thomas elements for the fluid and linear elements
for the displacement (Q1/RT1Q0). This problem [15] consists of a pulsating pressure point source
embedded in a uniform porous material, with boundary conditions chosen to permit an analytical
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(c) ε = 10−8

Figure 3: Plausible (smooth) solution for the three-material problem with a low-permeable layer and
non-uniform load. As ε decreases, the fluid pressure becomes dominant in the middle layer, and each
of the pressure components approach a discontinuous solution.

solution: pf|Γ = 0, u × n|Γ = 0, and initial conditions u = 0 and pf = 0. The pressure oscillations
disappear when the displacement is instead calculated with a discontinuous Galerkin method, and the
optimality of the pressure solution is proven for this method.

As regards the test case shown in Figure 1, we remark that elastic locking can not appear in this test
case which is one-dimensional, because in one dimension ∇ · u = ∂ux/∂x → 0 implies constant
displacement — a trivial solution which can be represented by any element. Hence, the oscillations
shown in this figure are not caused by elastic locking.

We therefore introduce asymmetry through a load on just the right half of the top boundary,
F (x) = {0 when x < 0.5, 1 otherwise}, in the three-layer problem (Figure 1a). With asymmetric
loading we do not have an analytical solution, unlike in the uniform-load case. Instead, we use the fact
that the volumetric effective stress,

σ′vol =
Trσ′

3
= ps +

2

3
µ∇ · u+ αpf, (31)

should be continuous and smooth (away from the externally applied discontinuity on the surface at
x = 0.5). The solution is illustrated in Figure 3, where the thick gray line shows that σ′vol is continuous
even when each of its three components is discontinuous. The smoothness of σ′vol does not prove that
the numerical solution converges, but it makes it easy to identify many of the wrong solutions with
oscillating pressure.¶ In the text, we refer to these apparently correct solutions as “plausible”, since
they are not compared to a known analytical solution.

We now compare the behaviour of the non-uniform load problem with a low-permeable layer to that
of a low-compressible layer. In the latter case, the middle layer of Figure 1a is replaced with a layer

¶We also note that the existence of analytical solutions is no panacea. As noted in, e.g., [16], geologically relevant solutions
are often not realisable on a reasonably sized computational mesh. For example, the fluid pressure solution in Figure 1b should
have a very sharp gradient between the two top layers, a feature that is not possible to realise with continuous elements unless
an extremely fine grid is used. Similarly, the Barry-Mercer problem requires a point pressure source, while discrete analogues
have source areas on the order of the element size. These inaccuracies in the discrete model may mask any “real” convergence
difficulties for all but very fine meshes.
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Figure 4: Plausible (smooth) solution for the three-material problem with a low-compressible layer
and non-uniform load. As opposed to the low-permeable case in Figure 3, the pressure components are
continuous.

with unit permeability but low compressibility; λ = ε−1, Λ = I. The plausible (smooth) solution to this
problem is shown in Figure 4. The total pressure profile is similar to the low-permeable problem, but the
load in the middle layer is here mainly supported by the volumetric stress, instead of the fluid pressure.
Furthermore, we know that this problem is susceptible to elastic locking. Figure 5 compares these two
cases using equal-order Q1/Q1 elements. As expected, the low-permeable problem has difficulty with
the fluid pressure, while the low-compressible problem has difficulty with the volumetric stress. There
is, however, a major difference in the effect that this has on the displacement. Figure 6 compares the
locking behaviour of the low-permeable and the low-compressible problems. In the low-compressible
problem, the faulty pressure is associated with elastic locking, i.e., the displacement is pulled toward
a constant in the middle region, Figure 6b. This restriction of the displacement is not seen in the low-
permeable problem, Figure 6a.

It appears that elastic locking is not in general a sufficient explanation for the fluid pressure
oscillations in low-permeable regions.

4. Spurious pressure oscillations and saddle-point problems

It is instructive to look at the case of total impermeability, Λ = S = 0. For clarity of presentation,
we furthermore set α = 1 and let q̃ = q∆t + ∇ · û, where û is the value of u at the previous time
step. In this case, Equations (1)–(2)‖ take on almost the same form as those of the mixed formulation
of incompressible linear elasticity (as opposed to the pure displacement formulation mentioned in the
previous section). This is evident when we compare the impermeable poroelastic equations

∇(λ+ µ)∇ · u+ ∇ · µ∇u−∇pf = r, ∇ · u = q̃, (32)

‖Or Equations (11)–(12) and (2) after eliminating vD = 0.
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Figure 5: Comparison of the two-field (Q1/Q1) solutions for a low-permeable and a low-compressible
layer. The solutions are erroneous for the fluid pressure in (a) and for the volumetric stress in (b). With
this particular choice of elements (and problem geometry), the volumetric stress does not oscillate, but
the error is still obvious as an abrupt drop in σ′vol. The corresponding plausible pressure solutions are
shown in Figure 3c for (a), and in Figure 4c for (b).
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(a) Low-permeable problem
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Figure 6: Comparison of the vertical displacement with non-uniform load. Notice the nearly constant
displacement in the low-compressible layer in (b), while the low-permeable layer does not lock the
displacement (a). ε = 10−8
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with the incompressible elastic equations

∇µ∇ · u+ ∇ · µ∇u−∇ps = r, ∇ · u = 0. (33)

Much of the analysis of Equation (33) is valid also for the present problem. In particular, Bathe [11]
notes that the weak form of Equation (33) has two major failure modes: The first is the already
mentioned elastic locking, wherein the displacement space is overly constrained by ∇ · u = 0. The
second failure mode occurs when the pressure space is too large and contains spurious pressure modes.

In linear algebra terms, Equation (33) can be discretised as[
A B
BT 0

] [
u
ps

]
=

[
r
0

]
, (34)

where Bij = bI(φjs ,φ
i
u) (and u is approximated as uh =

∑
k ukφk

u ; similarly for p). Then, locking
follows when kernel(BT) does not span the displacement space, while spurious pressure modes are
a consequence of a too large kernel(B). The same argument can be used in the poroelastic case,
Equation (32), except that the presence of locking is now determined by the space spanned by solutions
of BTu = q̃ instead of the null space.

If the cause of the fluid pressure oscillations lies in the well-posedness of the discrete weak form
of the equations, we know from, e.g., [17], that the solvability of the equations and the stability of the
solution follows from the Babuška inf-sup condition [18], which should be fulfilled for any mesh size
h:

γ0 ≤ γh = inf
vh∈Vh

sup
wh∈Vh

|c(vh, wh)|
‖vh‖V ‖wh‖V

, (35)

for some γ0 > 0. In the four-field formulation, for example, the discrete space is Vh = V u×Vf×V v×Vs
and vh, wh are functions in this space, e.g., vh = (vu, vpf , vvD , vps

) ∈ Vh. The key insight is that this
condition must be fulfilled for the complete coupled system of equations, and not only separately for
the fluid velocity/fluid pressure and the solid displacement/solid pressure. Hence, c in Equation (35) is
defined as

c(φ,ψ) = aII
f (φf , ψf ) + aII

v (φv, ψv) + aIII
u (φu, ψu) + aIII

s (φs, ψs) + bI(φf , ψu)

+ bII(φf , ψv) + bII(ψf , φv) + cII(φv, ψf ) + bI(ψf , φu) + bIII(ψs, φu) + bIII(φs, ψu). (36)

In the special case of symmetric saddle-point problems, on the canonical form a(v, u) + b(v, p) +
b(u, q) = l((v, q)), ∀(v, q) ∈ V and with a coercive, the following Brezzi conditions [17] are
equivalent to the Babuška condition. The Brezzi coercivity constant αh is

αh = inf
u∈Zh

sup
v∈Zh

a(u, v)

‖u‖V ‖v‖V
, (37)

with Zh = {v ∈ Vh | b(v, q) = 0, ∀q ∈ Qh}, while the Brezzi inf-sup constant∗∗ βh is

βh = inf
q∈Qh

sup
v∈Vh

b(v, q)

‖v‖V ‖q‖Q
(38)

∗∗The Brezzi inf-sup condition is also known as the Ladyzhenskaya-Babuška-Brezzi (LBB) condition.
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Both of these should be bounded from below as h → 0. The Brezzi inf-sup constant is particularly
interesting, because zero values for βh indicate the presence of spurious modes in Qh (as we stated in
terms of the kernel of the matrix B in the previous section).

The two-field formulation approaches a saddle-point problem when S = 0 and Λ → 0, in which
case it is similar to the mixed linear elasticity problem (for finite λ). Spurious pressure modes are then
associated with zero values of the Brezzi inf-sup constant,

βh = inf
q∈Vf

sup
v∈V u

bI(q,v)

‖q‖Vf‖v‖V u

. (39)

The three-field (fluid velocity) problem, however, is a true saddle-point problem whenever S = 0
(and symmetric when cII = 0). We can define

a((v,w), (x,y)) = aI
u(v,x) + aII

v (w,y), (40)

b(q, (v,w)) = bI(q,v) + bII(q,w), (41)

l((p,v)) = lIu(v) + lIIf (p), (42)

and restate Equations (10) and (15)–(16) in the form of a canonical saddle-point problem: Find the
solution (u,vD, pf) ∈ V satisfying

a((v,w), (u,vD)) + b(pf, (v,w)) + b(q, (u,vD)) = l((q,v)), ∀(v,w, q) ∈ V, (43)

with Brezzi stability constants

αh = inf
(v,w)∈Zh

sup
(x,y)∈Zh

aI
u(v,x) + aII

v (w,y)

(‖v‖V u + ‖w‖V v)(‖x‖V u + ‖y‖V v)
, (44)

βh = inf
q∈Vf

sup
(v,w)∈V u×V v

bI(q,v) + bII(q,w)

‖q‖Vf(‖v‖V u + ‖w‖V v)
. (45)

The Brezzi inf-sup constant is therefore zero only when the individual terms bI and bII are. These
individual couplings between the variables are similar to those of well-known problems, which have
known stable choices of finite element spaces:

• The displacement-fluid pressure coupling is similar to the displacement-solid pressure coupling
in the mixed linear elasticity problem (as shown),

• the displacement-solid pressure coupling is the same as in the mixed linear elasticity problem,
and

• the fluid velocity-fluid pressure coupling is same as the Darcy flow problem.

The separation of the coupling terms in the Brezzi inf-sup condition motivates our strategy of choosing
combinations of element spaces that satisfy these individual problems. Hence, pf should be chosen
to be an element that is usable for mixed formulations of both linear elasticity and fluid flow. For
example, if an element combination that is stable for mixed linear elasticity is chosen for u and ps,
and a combination that is stable for Darcy flow is chosen for vD and pf, we must then ensure that
the resulting combination for u and pf is also stable for mixed linear elasticity. An example of a
combination that could work is the lowest order Raviart-Thomas (RT) for vD-pf and the lowest order
Crouzeix-Raviart (CR) or Rannacher-Turek (TR) elements for u-ps. Both pressure elements (fluid and
solid) are then piecewise constant, so the u-pf combination is also potentially stable (CR or TR).

With these guidelines, we proceed to examine the stability of a number of combinations of finite
elements.
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Table I: Summary of pairwise element combinations. Elements of polynomial order k are classified
as Pk or Qk for Lagrangian elements, while RTk, CRk and TRk are the Raviart-Thomas, Crouzeix-
Raviart (triangular) and Rannacher-Turek (quadrilateral) non-conforming elements, respectively.
Discontinuous elements are marked as “−k” (except k = 0, where this is implicit). Enriched (bubble)
elements are marked by “+”.

(a) Triangular elements

Element Comment

P1P1 Equal order Lagrange (lowest order)
P2P2 Equal order Lagrange
RT1P0 Lowest order Raviart-Thomas (Hdiv)

vector element
P+
2 P1 “Good element” (M. Fortin, via [22])

P2P1 Lowest order Taylor-Hood
P2P0 Only linear convergence in P2 [23]
CR1P0 Lowest order Crouzeix-Raviart non-

conforming element
P+
2 P−1 From [23]; “optimal” [11], “good

element” (M. Fortin, via [22])
P+
1 P1 MINI [24]

(b) Quadrilateral elements

Element Comment

Q1Q1 Equal order Lagrange (lowest order)
Q2Q2 Equal order Lagrange
RT1Q0 Lowest order Raviart-Thomas (Hdiv)

vector element
Q2Q1 Lowest order Taylor-Hood
Q2Q0 Only linear convergence in Q2

TR1Q0 Lowest order Rannacher-Turek non-
conforming

Q1Q0 One of the most popular elements in
practice [22], LBB unstable (but still
usable)

Q2P−1 Discontinuous, linear (rather than bi-
linear) pressure; “optimal” [11], “most
accurate 2D element” [22]

Q++
1 Q1 Quadrilateral MINI analogue [25]

5. Convergence testing

The Babuška or Brezzi conditions require careful work to evaluate analytically, even for a single
element family on a two-field problem. For a large number of combinations on three- and four-field
problems, it is impractical. As an alternative, the conditions may be tested numerically on a series
of meshes, by solving the generalised eigenvalue problems associated with the Babuška or Brezzi
conditions [19, 20]. Automated tools are available for this purpose, e.g, ASCoT [21]. The full generality
with regards to element definitions and boundary conditions is however not yet achieved. Hence, we
have chosen to analyse the element combinations by investigating their real performance on a number
of concrete test cases.

We have selected several element pairs, listed in Table I, that are in common use, and tested
combinations of these. Using the four-field formulation as an example, we could choose these element
pairs: RT1Q0 for vD-pf and Q2P−1 for u-ps, resulting in Q2Q0 for u-pf. This is written as the element
combination Q2P−1/RT1Q0.

Two of the test cases are as described earlier: A problem with a low-permeable layer embedded
in a normal one from Figure 1a, and the Barry-Mercer problem, with a point pressure source inside
a low-permeable material from Figure 2a. For the Barry-Mercer problem, we use elastic parameters
λ = µ = 1, a time step of ∆t = 0.01, and source strength p0 = 1.

The third test case is shown in Figure 7a. It is a variation of the earlier embedded-layer case, where
the top layer is made low-compressible. Thus, there are three layers: The top one low-compressible;
the middle one low-permeable; and the bottom one normal. The two three-layer cases are both tested
with uniform load and with load on just the right half of the top boundary.
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Low-compressible region
λ = ε−1, Λ = I

Low-permeable region
λ = 1, Λ = εI

Normal region
λ = 1, Λ = I

Plot line

0

0.25

0.75

1

z

x

(a) The domain
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(b) A solution

Figure 7: The three-material test case. In the top layer, the load is carried by the solid pressure; in the
middle layer by the fluid pressure.

In either case, we evaluate the solution after a single time step. As reported in, e.g., [6], the pressure
oscillations tend to smooth out over time, and hence the first time step is the most revealing one.

We have summarised the results in Table II. Most of the results are as expected based on our previous
analysis: The equal interpolation elements, and those which are picked from known-stable pairs in
Table I mostly work. The exceptions are the CR1P0 and TR1Q0 non-conforming elements for u-pf.
The CR1 or TR1 element might potentially be useful for u when using RT1 for vD, since both are first
order and both combine with piecewise constant pressure elements. As noted in the table, we were able
to “fix” the TR1 element by setting extra tangential boundary conditions, but this solution is not very
satisfactory in general.

The Q1/RT1Q0 combination for the fluid velocity three-field formulation succeeds with the two-
and three-material problems, but fails on the Barry-Mercer problem. The latter failure is shown in
figure Figure 2b, which illustrates what is called the “checkerboard” spurious pressure mode (as does
Figure 1b). This spurious mode is well known and ubiquitous [11, 22]. It can in many cases be
“fixed” by juggling of boundary conditions; in particular, by releasing tangential essential conditions.
Furthermore, Gresho and Sani [22] state that in their experience (and analysis) the Q1Q0 combination
actually has optimal convergence after filtering the spurious pressure modes.

Whenever the domain has large permeability contrasts, the solution may contain steep pressure
gradients. Discontinuous elements may then be advantageous to avoid localised oscillations in the fluid
pressure. Comparing Figure 8a and Figure 8b, it is evident that the continuous pressure elements cannot
represent the gradient at the interface between the high- and low-permeable region, and the resulting
overshoot induces local oscillations in the pressure solution. When using discontinuous elements for
the fluid pressure, these oscillations are not present. Discontinuous elements for the fluid pressure can
not be used in the two-field formulation, where H1 regularity is required.

Nevertheless, local pressure oscillations may still occur in certain situations, for example in early
times of the Terzaghi consolidation problem. Terzaghi’s problem, analysed in for example [26],
describes the vertical consolidation of saturated soil. One end of the soil column is drained, and a
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Table II: Summary of the numerical stability results for different elements. The test cases are (in order)
Uniform load, Right-Half load for the two- and three-material cases, and the Barry-Mercer problem.
The three-material case is used when ps is present, otherwise the two-material case is used.

(a) Triangular elements

Element Test case

u ps vD pf U RH BM

P1 — — P1 fail fail fail
P2 — — P2 fail fail fail
P+
1 — — P1 OK∗ OK∗ OK∗

P2 — — P1 OK∗ OK∗ OK∗

P2 — RT1 P0 OK OK OK
CR1 — RT1 P0 fail† fail† fail†

P2 — P2 P1 OK∗ OK∗ OK∗

P+
2 — P+

2 P−1 OK OK OK

P+
1 P1 — P1 OK∗ OK∗ OK

P+
1 P1 RT1 P0 fail fail fail

P+
2 P−1 RT1 P0 OK OK OK

P2 P0 RT1 P0 OK OK OK
P+
2 P−1 P+

2 P−1 OK OK OK

∗Continuous pressure elements exhibit local pressure spikes
†Singular coefficient matrix

(b) Quadrilateral elements

Element Test case

u ps vD pf U RH BM

Q1 — — Q1 fail fail fail
Q2 — — Q2 fail fail fail
Q++

1 — — Q1 OK∗ OK∗ OK∗

Q2 — — Q1 OK∗ OK∗ OK∗

Q2 — RT1 Q0 OK OK OK
TR1 — RT1 Q0 fail‡ fail‡ OK
Q1 — RT1 Q0 OK OK fail
Q2 — Q2 Q0 OK OK OK

Q++
1 Q1 — Q1 OK∗ OK∗ OK

Q2 P−1 — Q1 OK∗ OK∗ OK∗

TR1 Q0 RT1 Q0 OK fail OK
Q1 Q0 RT1 Q0 OK OK fail
Q2 P−1 Q2 P−1 OK OK OK

‡Succeeds when tangential displacement BCs are added

compressive force of unit magnitude is instantaneously applied. In this case, both continuous and
discontinuous elements lead to some overshoot of the fluid pressure, as shown in Figure 8c. In contrast
to the earlier case, this problem cannot be well approximated with a small number of elements;
arguably, the best approximation to the continous pressure solution at early times is a constant (pf = 1),
but this solution violates the essential boundary condition at the drained end (pf = 0). Hence, this
problem requires additional stabilisation to avoid initial oscillations for short time steps [7, 8, 9].

Depending on the model and on the desired properties of the solution, we list some combinations of
element spaces that we find attractive.

• For a fast solver, the two-field formulation may be desirable. The fluid pressure solution must
then be a subspace of H1, (i.e., continuous), and localised pressure oscillations are unavoidable,
as remarked above, unless stabilisation is added (such as the flow perturbation proposed by
Aguilar et al. [7]). The MINI element combination (P+

1 /P1), or its quadrilateral analogue
(Q++

1 /Q1) are attractive choices. The Taylor-Hood element (P2/P1 or Q2/Q1) is also stable,
but the higher accuracy in u may be wasted since vD is only piecewise constant.

• If higher accuracy of vD is required, the fluid velocity three-field solution is warranted. A
popular choice for the fluid velocity is the lowest order Raviart-Thomas elements, with piecewise
constant fluid pressure. However, the simplest Stokes-stable element to combine with piecewise
constant pressure is Crouzeix-Raviart (or Rannacher-Turek for quadrilaterals), which we found
to be problematic. One would then have to use quadratic displacement (P2/RT1P0 orQ2/TR1Q0),
which is rather expensive for a method which is still only first order accurate in the velocity. An
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(a) Three-layer problem using Q2/Q1

and ε = 10−8
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(b) Three-layer problem; Q2/Q2P−1

and ε = 10−8
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(c) The Terzaghi consolidation problem
with 32 elements at time T = 10−6

Figure 8: Using discontinuous elements for the fluid pressure (b) avoids local oscillation at the edge of
the low-permeable material, where the pressure gradient is very steep. It does not, however, smoothly
handle the pressure front in early stages of the Terzaghi consolidation problem (c).

alternative might be to follow the precept of Phillips and Wheeler [10], and use the Discontinuous
Galerkin method for the displacement, or to use a variant which has second order accuracy also
for the velocity (such as P+

2 /P+
2 P−1 or Q2/Q2P−1).

• When low-compressible materials are present, the solid pressure three-field formulation (or even
the four-field formulation) may be required. A good choice for the former appears to be the
MINI combination P+

1 P1/P1 or Q++
1 Q1/Q1, although the problem of localised oscillations in

both fluid and solid pressure around discontinuities reappears. For the four-field formulation, we
recommend P+

2 P−1/P+
2 P−1 or the quadrilateral Q2P−1/Q2P−1.

6. Concluding remarks

In this paper we have investigated the spurious pressure oscillations that are present in the finite element
solution of the poroelastic equations for small time steps and low-permeable materials.

Through comparison with the displacement-solid pressure mixed formulation of linear elasticity, we
identify the spurious pressure modes as a specific consequence of a vanishing Brezzi inf-sup constant
βh. Since the Brezzi inf-sup condition for the poroelastic equations takes on a similar form as in, e.g.,
the mixed linear elasticity or Stokes problem, this identification opens up the field to a plethora of stable
element candidates. These can be used directly for the basic solid displacement-fluid pressure two-
field formulation of poroelasticity, or in combinations for the various three- and four-field formulations
involving solid pressure and/or fluid velocity.

Extensive numerical investigation of the stability of a large set of two-, three- and four-field models
have been performed. These investigations provide evidence that most of the element combinations
recommended by our theoretical guidelines give oscillation-free solutions for the pressure.
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