
Computational Geosciences manuscript No.
(will be inserted by the editor)

A parallel block preconditioner for large scale poroelasticity with highly
heterogeneous material parameters

Joachim Berdal Haga · Harald Osnes · Hans Petter Langtangen

Received: date / Accepted: date

Abstract Large-scale simulations of coupled flow in defor-
mable porous media require iterative methods for solving
the systems of linear algebraic equations. Construction of ef-
ficient iterative methods is particularly challenging in prob-
lems with large jumps in material properties, which is often
the case in realistic geological applications, such as basin
evolution at regional scales. The success of iterative meth-
ods for such problems depends strongly on finding effective
preconditioners with good parallel scaling properties, which
is the topic of the present paper.

We present a parallel preconditioner for Biot’s equations
of coupled elasticity and fluid flow in porous media. The
preconditioner is based on an approximation of the exact in-
verse of the two-by-two block system arising from a finite
element discretisation. The approximation relies on a highly
scalable approximation of the global Schur complement of
the coefficient matrix, combined with generally available
state-of-the-art multilevel preconditioners for the individual
blocks. This preconditioner is shown to be robust on prob-
lems with highly heterogeneous material parameters. We in-
vestigate the weak and strong parallel scaling of this precon-
ditioner on up to 512 processors, and demonstrate its ability
on a realistic basin-scale problem in poroelasticity with over
8 million tetrahedral elements.

J. B. Haga
Computational Geosciences, Simula Research Laboratory
PO Box 134, NO-1325 Lysaker, Norway
Tel.: +47 67 82 82 00
Fax: +47 67 82 82 01
E-mail: jobh@simula.no

H. Osnes
Department of Mathematics, University of Oslo
PO Box 1053 Blindern, NO-0316 Oslo, Norway

H. P. Langtangen
Center for Biomedical Computing, Simula Research Laboratory
PO Box 134, NO-1325 Lysaker, Norway

Keywords parallel computing · block preconditioning ·
poroelasticity · low-permeable media · finite elements

Mathematics Subject Classification (2000) 35Q72 ·
35Q80 · 65F10 · 65Y05 · 65Y20 · 74F10 · 74L10 · 74S05

1 Introduction

Iterative methods have proven to be the most scalable ap-
proach for parallel solvers for algebraic systems of equa-
tions, such as those arising from discretisations of partial
differential equations (PDEs). Nonetheless, the efficiency of
iterative solvers is highly problem-dependent and sensitive
to the parameters of the system. Biot’s equations [4], describ-
ing the coupled poroelastic response of fluid-filled materials,
have been shown to be a difficult problem for such solvers
due to the extreme jumps that some of the material parame-
ters exhibit in realistic problems. As a result, direct solvers
are often employed in such situations. Direct solvers, how-
ever, suffer from suboptimal scaling in time [9] and in space
[14]. Thus, for truly large-scale problems, such as realistic
basin-scale models, efficient and robust iterative methods
must be found.

In [18], the present authors demonstrated the efficacy
of a preconditioner based on the exact block decomposi-
tion in the serial case, using the Schur complement of the
2× 2 coefficient matrix. For the individual blocks, an alge-
braic multigrid (AMG) preconditioner is used. The AMG
preconditioner has been shown to have good parallel scaling
properties for up to thousands of processors [2, 21]. Given
scalable preconditioners for the individual blocks, block pre-
conditioners that work on the unmodified blocks of the co-
efficient matrix are relatively straightforward to parallelise.
The Schur complement, however, requires special care. El-
man et al. [10, 11] studied the parallel scaling of block pre-
conditioners based on the Schur complement for the Navier-

2 Joachim Berdal Haga et al.

Stokes problem. Simpler Schur complement block precondi-
tioners have been employed successfully for Biot’s equation
[25, 27]. However, it remains to investigate the parallel ef-
ficiency of the more advanced block preconditioners from
[18], particularly targeting large jumps in material parame-
ters. This is exactly the topic of the present paper.

We perform extensive numerical investigations on model
problems in two and three dimensions on a computer clus-
ter using up to 512 processors to verify parallel scalability.
Additionally, we perform tests on a realistic basin model ex-
ported from a commercial basin simulator. This model is too
large to be solved by direct methods, and has so far proven
intractable to standard iterative methods due to the strong
contrasts in the material parameters (in particular, the per-
meability).

This paper is organised as follows. In Section 2 the gov-
erning equations of the poroelastic problem are presented,
followed by a brief overview of their weak form and the ap-
proximation this leads to in the finite element method. An
outline of block preconditioners is found in Section 3, along
with the algorithms for construction of the distributed Schur
complement approximation. Section 4 shows how the math-
ematical model is implemented in software, and details how
the parallelism is achieved, while Section 5 reports the re-
sults of the numerical investigations including parallel scal-
ing results. Finally, we give some concluding remarks in Sec-
tion 6.

2 Mathematical model

The equations describing poroelastic flow and deformation
are derived from the principles of conservation of fluid mass
and the balance of forces on the porous matrix. The linear
poroelastic equations can, in the small-strains regime, be ex-
pressed as

Sṗ−∇ ·Λ∇p+α∇ · u̇ = q, (1)

∇(λ +µ)∇ ·u+∇ ·µ∇u−α∇p = r. (2)

Here, we subsume body forces such as gravitational forces
into the right-hand side source terms q and r. The primary
variables are p for the fluid pressure and u for the displace-
ment of the porous medium. Furthermore, S and Λ are the
fluid storage coefficient and the flow mobility respectively,
α is the Biot-Willis fluid/solid coupling coefficient, and λ

and µ are the Lamé elastic parameters.
The fluid (Darcy) velocity is often of particular interest

in poroelastic calculations. It can be written

vD =−Λ∇p, (3)

and represents the net macroscopic flux. For the displace-
ment equation, the main secondary quantity of interest is the

effective stress tensor,

σ̃ = (α p+ ps)I +µ(∇u+(∇u)T), (4)

which is written here using the solid pressure

ps =−λ∇ ·u. (5)

The model is closed by the addition of boundary and initial
conditions,

p|Γp = pΓ , u|Γu = uΓ , p(t0) = p0, u(t0) = u0 (6)

where Γp and Γu are the parts of the boundary fluid pres-
sure and solid displacement are specified, and t0 is the initial
time.

2.1 Weak time-discrete form.

We employ a first-order backward finite difference method
in time, which leads to the time-discrete form of Eq. 1

Sp−∆ t∇ ·Λ∇p+∇ ·u = q∆ t +Sp̂+∇ · û. (7)

Hatted variables (p̂, û) indicate values from the previous
time step, while unmarked variables are taken to be at the
current time step.

Next, we rewrite Eq. 2 and 7 in weak form, using integra-
tion by parts to eliminate second derivatives. We define the
following (bi-)linear forms on the domain Ω with boundary
Γ ,

ap(φ p, p) =−∫
Ω

Sφ p p+∆ t∇φ p ·Λ∇pdΩ ,

lp(φ p) =−∫
Ω
(q∆ t +Sp̂+∇ · û)φ p dΩ

+
∫

Γ
φ p fn∆ t dΓ ,

(8)

and

au(φ u,u) =
∫

Ω
[(λ +µ)(∇ ·φ u)(∇ ·u)
+µ∇φ

u : ∇u]dΩ ,

b(φ u, p) =−∫
Ω

α p∇ ·φ u dΩ ,

lu(φ u) =−∫
Ω

φ
u · r dΩ +

∫
Γ

φ
u · tn dΓ .

(9)

The problem then becomes: Find p ∈ Vp and u ∈ V u that
satisfy the following relations:

ap(φ p, p)+b(u,φ p) = lp(φ p) ∀φ p ∈Vp, (10)

au(φ u,u)+b(φ u, p) = lu(φ u) ∀φ u ∈V u. (11)

The normal flux fn = vD · n and the normal stress tn on the
boundary Γ appear in these equations as natural boundary
conditions. The natural spaces for the continuous problem
are Vp = H1 for the pressure and V u = H1 for the displace-
ment.

The discrete approximation follows from solving the eq-
uations for the weak form in finite-dimensional subspaces of

A parallel block preconditioner for highly heterogeneous media 3

the continuous spaces: Given finite element basis functions
φ

u
i ∈ V uh ⊂ V u spanning the discrete displacement space,

and basis functions φ
p
i ∈Vph⊂Vp spanning the discrete fluid

pressure space, the unknown functions are approximated as
u≈∑i uiφ

u
i and p≈∑i piφ

p
i . The task is to find the vectors u

and p that makes these approximations as good as possible
(in some sense); this is done by the finite element method.

2.2 The algebraic system

The algebraic system that results from discretising Eqs. 10–
11 is on the form

A x = b, (12)

where A is the coefficient matrix derived from the left-hand
sides of Eqs. 10 and 11, b is the load vector arising from
the right-hand sides, and x is the unknown solution vector.
As this is a coupled system of two equations, the coefficient
matrix can be viewed as a 2× 2 block matrix. The signs of
the equations have been chosen so as to make this a symmet-
ric indefinite problem, which we write blockwise as

A =

[
A B
BT C

]
, x =

[
u
p

]
, b =

[
lu

lp

]
, (13)

with A symmetric positive definite and C symmetric nega-
tive definite. Using the finite element basis functions φ

u
i and

φ
p
i introduced above, the entries of each block are

Ai j = au(φ u
i ,φ

u
j), (14)

Bi j = b(φ u
i ,φ

p
j), (15)

Ci j = ap(φ
p
i ,φ

p
j). (16)

The load vector is defined in a similar way, with lui = lu(φ u
i)

and lpi = lp(φ
p
i).

The solution of algebraic systems of equations result-
ing from finite element discretisations, like Eq. 12, gener-
ally shows poor convergence properties when using iterative
solvers. To overcome this, suitable preconditioning is cru-
cial.

3 Block preconditioning methods

We seek a preconditioner that exploits the block structure of
Eq. 13. The simplest example is perhaps the block Jacobi
preconditioner,

P−1
J =

[
A−1 0

0 C−1

]
. (17)

The single-block inverses are too expensive to compute ex-
actly, and will be approximated by single-block precondi-
tioners. In the following, we mark such approximations with

1 v ← Ã−1w
2 q′← BTv− r
3 q ← S̃−1q′

4 if symmetric then
5 v′ ← Bq
6 v ← v− Ã−1v′

7 end

Algorithm 1 Application of the block Gauß-Seidel precon-
ditioners to a block vector: [v q]T←P−1

g(S)GS[w r]T

a tilde: Ã−1 and C̃−1. By further defining the lower-triangu-
lar coupling matrix as

G =

[
I 0

−BTÃ−1 I

]
, (18)

we can express the block Gauß-Seidel preconditioner as the
matrix product P−1

GS = P−1
J G , and its symmetric variation

as P−1
SGS = GTP−1

J G .
The Schur complement of the block coefficient matrix

A is defined as S = BTA−1B−C. It is symmetric and pos-
itive definite. Following [25] we can write the Generalised
Jacobi preconditioner as1

P−1
gJ =

[
Ã−1 0

0 −S̃−1

]
. (19)

The corresponding Generalised Symmetric Gauß-Seidel pre-
conditioner, which we define by analogy with regular Gauß-
Seidel as

P−1
gSGS = GTP−1

gJ G , (20)

is in fact an exact inverse of A , if the single-block inverses
are exact.

An inexact version of Eq. 20, along with its nonsymmet-
ric cousin P−1

gGS, were shown in [18] to be very robust pre-
conditioners for Biot’s equations on a problem with extreme
contrasts in the material parameters. Algorithm 1 shows the
necessary steps to implement this preconditioner. Each as-
signment requires one global single-block operation, i.e., the
processor-local operation followed by an update of the for-
eign nodes. The application of the (1,1) preconditioner Ã−1

to a vector is normally by far the most expensive step of
this algorithm, and the symmetric variant is therefore about
twice as expensive as nonsymmetric generalised Gauß-Seidel.
However, the symmetric variant provides the opportunity to
use symmetric solvers. Such solvers are often more efficient
and/or robust than nonsymmetric solvers, which may justify
the increased cost. In the remainder of this paper, we focus
on the symmetric variant.

1 In the reference, a scalar multiplier α is used for the (2,2) block;
here, α =−1.

4 Joachim Berdal Haga et al.

3.1 The distributed Schur complement approximation

First a small note on terminology: The word “node” is tradi-
tionally used both in the parallel computing context and in
the PDE context, with different meanings. In the following,
we reserve node to mean a spatially located unknown in the
finite element method, while computational node is used for
a single computer in a cluster. To further clarify the com-
putational hierarchy, processor is used interchangeably with
core to mean a computing unit that runs a single process.
One or more processors make up a die, and one or more
dies make up a computational node. Thus, a typical compu-
tational node may have two quad-core dies with a total of
eight processors.

We shall come back later to the subject of parallel parti-
tioning, but to simplify the discussion we assume the follow-
ing properties of the partitioning:

(i) Each node is owned exclusively by one processor. This
node is then interior to the owning processor. The node
may also be present on neighbouring processors, where
it is a foreign node. We also use the term border node for
those nodes which are interior, but share an element with
(and hence couple to, in the coefficient matrix) a foreign
node.

(ii) Every interior node has full cover on the owning proces-
sor, i.e., all elements that contain the node are present in
the local finite element assembly.

While forming the exact Schur complement is infeasible,
an approximation that was shown in [18] to perform well for
high-contrasting material parameters is

Ŝ = Diag(BT(DiagA)−1B)−C, (21)

where Diag is an operator that creates a matrix of equal
dimension, containing only the diagonal elements.This ap-
proximation can be calculated in parallel with overhead eq-
ual to that of a single matrix-vector product. To understand
how, we look briefly at the behaviour of a parallel matrix-
matrix product.

In Fig. 1a, we have sketched the structure of a processor-
local part of the global coefficient matrix. The salient part is
this: All rows and columns involving interior nodes are glob-
ally correct and complete. Hence, the diagonal of the result
of a local matrix-matrix product (shown in Fig. 1b) is cor-
rect for all entries associated with interior unknowns. Only
the entries associated with foreign unknowns are incorrect.
This is not a problem, since a matrix-vector product is al-
ways followed by an update of the foreign nodes. However,
Eq. 21 involves a triple matrix product. To ensure that the di-
agonal of this triple-product is correct for all interior entries,
we do need to have globally correct entries for the whole
of DiagA; otherwise the product (DiagA)−1B will not have
the structure of Fig. 1a (the interior columns of the foreign

1 parallel for each processor P do
2 aP← diag(AP) . create column vector from diagonal
3 aP← update(aP) . fetch foreign nodes from neighbours
4 ŜP←−CP

5 for each interior row i do
6 for each nonzero index k in the matrix row BP

i do
7 ŜP

ii ← ŜP
ii +(BP

ik)
2(aP

k)
−1

8 end
9 end

10 end

Algorithm 2 Construction of the distributed Schur comple-
ment approximation Ŝ← Diag(BT Diag(A)−1B)−C

rows will be wrong). The complete algorithm to create the
distributed Schur complement of Eq. 21 is presented in Al-
gorithm 2. The only interprocess communication in this al-
gorithm takes place in step 3, where the diagonal is updated.

3.2 The single-block preconditioners

The block preconditioners in the previous section depend on
the availability of efficient single-block preconditioners Ã−1

and S̃−1. We restrict our attention to preconditioners which
are efficient on massively parallel computers. This rules out
incomplete and approximate direct solvers such as the other-
wise excellent ILU methods.

Adams [1] found AMG to behave very well on prob-
lems of elastic deformation, even in the presence of strong
material discontinuities. In particular, the smoothed aggre-
gation (SA) method [28, 5] was considered to be the overall
superior AMG method for elasticity problems. The present
authors likewise found SA to be a nearly optimal precondi-
tioner for the discontinuous Poisson pressure problem (see
[16]), and to perform well on the similarly structured Schur
complement approximation found in Eq. 21 (see [18]).

In the light of these earlier results, and the fact that AMG
has been shown to scale very well in parallel, to at least thou-
sands of processors [29, 2, 21, 7], we have chosen to use SA
to precondition both the decoupled displacement equation
(A) and the Schur complement approximation (Ŝ).

4 Software framework

We have implemented the finite element discretisation and
assembly, as well as the the block preconditioners and itera-
tive solvers, using the Diffpack C++ framework [23, 8], with
extensive modifications in key areas: parallel block systems,
parallel partitioning, and mixed finite elements (serial and
parallel).

A domain decomposition approach is used for the finite
element assembly stage, where each processor works on a

A parallel block preconditioner for highly heterogeneous media 5

0

0

interior rows
(complete)

interior rows
(incomplete)

interior
couplings

foreign
couplings

wrong

(a) Processor-local matrix structure

0

0

interior rows
(complete)

interior rows
(incomplete)

foreign
couplings

(b) Structure after local matrix-matrix product

Fig. 1 In a processor-local matrix-matrix product, the interior rows with nonzero foreign coupling terms are wrong; only the
interior-row part of the diagonal can be trusted

subset of the global grid. In the linear algebra stage, mes-
sage passing (using Message Passing Interface, MPI) is used
to formulate globally consistent operations for matrix-vector
products, vector inner products, and so on. The main trade-
off in this approach is in choosing how to partition the grid
between processors. Our choice is mainly motivated by the
ease of interfacing with external parallel libraries. Hence, we
employ a model wherein each node is owned exclusively by
one processor. If we further require that every such interior
node is provided with full cover on the owning processor,
we gain the desirable property that the matrix rows (and, in-
cidentally, the matrix columns) associated with this node are
complete.

The partitioning procedure proceeds in two stages:

(i) Balance the nodes between the processors, while min-
imising the number of intersected elements,

(ii) Add foreign nodes to each partition until full cover is
provided for each interior node.

A hypergraph partitioner, with each hyperedge containing
the nodes of one element, should be the ideal way to achieve
(i). However, all partitioners use heuristics to achieve accept-
able performance, and a graph or even a geometric parti-
tioner may perform equally well on a given problem. We
interface with the PHG hypergraph partitioner and a geo-
metric partitioner from Zoltan [6], and with the METIS and
ParMETIS [22] graph partitioners.

The single-block AMG preconditioners are from the ML
package for Smoothed Aggregation [13], which is part of the
Trilinos project [19]. The ML interface requires the input of
complete local rows for the global coefficient matrix, a task
which is greatly aided by the properties of the partitioning
listed above.

In addition to the above, we have developed software to
import finite element grids, fields and material parameters
from Petromod [24], which is one of the leading basin sim-
ulation software packages in the oil and gas industry. This
allows us to use realistic geometries, initial conditions and
material parameters in our tests.

5 Numerical experiments

5.1 Convergence criterion

When using iterative methods for solving algebraic systems
of equations, a suitable convergence criterion must be intro-
duced. Different criteria are possible, but the “ideal” crite-
rion which measures the error is generally not available un-
less the solution is known in advance. More commonly, a
convergence criterion based on the residual rk = b−A xk
(in the k-th iteration) is used. However, such a criterion may
be misleading when A is very ill-conditioned [16], such as
with severe jumps in the material parameters. We are less
interested in the solution itself than in the convergence prop-
erties of the solver, and thus we may exploit a convenient
property of iterative solvers: the convergence is independent
of the right-hand side b as long as the initial guess (and
hence the initial residual) contains all eigenvectors of A [15,
ch. 3.4].

Hence, we solve the modified problem A x = 0 with a
randomised initial solution vector x0, instead of the original
A x= b. With a zero right-hand side, the error is simply ek =

xk. We also note that due to this testing procedure, the exact
value of any boundary condition is irrelevant, since these
values go into the b vector. The only relevant information
in this case is where essential boundary conditions are used,
since the presence of an essential boundary condition at a
node is reflected by a modification to the associated row(s)
and column(s) of A .

In the description that follows of the numerical experi-
ments, we use the term error criterion (with an associated
tolerance ε , implying ‖ek‖ ≤ ε) for the convergence crite-
rion described above. However, in order to measure more
narrowly the efficiency of the parallel implementation itself,
it is sometimes advantageous to measure the time to com-
plete a fixed number of iterations (convergence criterion k =
kmax); we shall refer to this as the iteration criterion.

6 Joachim Berdal Haga et al.

e
rr

o
r

(l
o
g

 s
c
a
le

)

iterations (broken linear scale)

ConjGrad
BiCGstab

10
-8

10
-4

10
0

10
4

0 5 200 400 600 800 1000 1200

(a) Error with three random initial vectors and zero right-hand side

re
s
id

u
a
l
(l
o
g

 s
c
a

le
)

iterations (broken linear scale)

ConjGrad
BiCGStab

10
-12

10
-8

10
-4

10
0

0 5 200 400 600 800 1000 1200

(b) Residual with zero initial vector and nonzero right-hand side

Fig. 2 Iterations to reach a given reduction in error norm (a)
or residual norm (b) on the realistic basin case (III)

5.2 Choice of iterative solver

The coefficient matrix A is symmetric indefinite. Since the
preconditioner is symmetric, the preconditioned coefficient
matrix P−1

gSGSA is also symmetric. With such a system of
equations, one would normally prefer an iterative solver which
can be used with indefinite systems. It is known that the Con-
jugate Gradient method can perform well even when there
are a few negative eigenvalues [12]; however, the present
problem has a large number of negative eigenvalues. The
convergence of the Conjugate Gradient method does not gen-
erally follow from the theory on such problems. Although
convergence is not guaranteed, we have nevertheless seen
good convergence in practice with this method, as reported
in [18]. Fig. 2 compares the Stabilised Bi-Conjugate Gradi-
ent (BiCGStab) method, which is designed for general prob-
lems, with the Conjugate Gradient (ConjGrad) method on
the realistic basin model described below. In Fig. 2a, three
experiments are shown for each of BiCGStab and Conju-
gate Gradients, using random initial vectors with error 100

(jumping to ∼ 105 in the first iteration). The residuals, with
a nonzero right-hand side, are shown in Fig. 2b for compar-
ison. Notably, the residual does not exhibit the initial large
jump that is seen in the error, and hence the residual is many
orders of magnitute below the error.

This is our most difficult test case for the iterative solver.
It appears that the Conjugate Gradient method performs just
as well as the BiCGStab method, and furthermore that it has
much smaller sensitivity to the (random) initial solution vec-
tor. Consequently, we use the Conjugate Gradient method in
our experiments.

We should note, lest the results in Fig. 2a make our cho-
sen preconditioner look bad, that this test problem is one
which we previously have not been able to solve at all using
standard iterative solvers and preconditioners. Thus, even a
preconditioner which requires 500+ iterations is a significant
step forward.

5.3 Scaling

Before looking further into the experimental data, it may be
advantageous to have a rough idea what to expect from the
results. We can identify five main causes of imperfect paral-
lel scaling:

(i) increased local problem size due to duplicated nodes and
imbalance,

(ii) point-to-point (neighbour) communication,
(iii) collective (global) communication,
(iv) increasing number of iterations in the iterative solver for

a given accuracy, and
(v) slowdown due to congestion of shared resources (within

or between computational nodes).

In general, (iv) depends on the chosen preconditioner/iter-
ative solver combination, and can be controlled by using an
iteration criterion instead of an error criterion, while (v) is
hardware dependent and must usually be discovered through
testing.

We investigate the parallel scalability in two different
scaling paradigms. In the weak scaling paradigm, the num-
ber of nodes (or work) per processor is fixed. Causes (i) and
(ii) should then approach constant overhead (after an initial
ramp-up), while the cost of cause (iii) is of order logP on P
processors [26].

We also investigate strong scaling. In this paradigm, the
total problem size is fixed as the number of processors in-
creases. Strong scaling has received less attention than weak
scaling in the literature, but in practical applications the need
to solve a large problem as fast as possible is perhaps more
common than the need to solve a problem that is as large as
possible in a given time. In this case, the absolute overhead
due to causes (i) and (ii) decreases with increasing P. It does
not, however, decrease as fast as the amount of useful work
per processor. Hence, the relative overhead increases.

We define the efficiency as the ratio of the perfect-scaling
runtime to the actual runtime, or, equivalently, the number
of unknowns processed per unit aggregate time. In D spatial
dimensions, the walltime T and efficiency E in the weak
scaling paradigm, with N nodes on each of P processors,

A parallel block preconditioner for highly heterogeneous media 7

 0.01

 0.1

 1

 1 10 100 1000 10000

e
ff

ic
ie

n
c
y
 (

lo
g
 s

c
a
le

)

number of processors (log scale)

weak
strong

Fig. 3 Typical shape of the efficiency curves for strong and
weak scaling.

can be modelled as

T (1) = cN, (22)

Tw(P) = T (1)+acN
D−1

D +bc logP, (23)

Ew(P) =
T (1)
Tw(P)

=
[
1+aN

−1
D +bN−1 logP

]−1
, (24)

where a, b and c are constant factors depending on the speci-
fics of the problem and of the platform. In the strong scaling
paradigm, with N/P ≥ 1 nodes per processor, these can be
modelled as

Ts(P) = T (1)/P+ac(N/P)
D−1

D +bc logP, (25)

Es(P) =
T (1)

PTs(P)
=
[
1+a(P/N)

1
D +b(P/N) logP

]−1
. (26)

This assumes perfectly scalable hardware (no interconnect
saturation, etc), and a fixed number of iterations of the iter-
ative solver. The constant a comes from (i)–(ii) above, and
b comes from (iii); the quantity N

D−1
D is proportional to the

number of nodes intersected by a slice through the domain.
Disregarding the exact value of the various constants, we

expect to see efficiency curves of the general shapes shown
in Fig. 3: A nearly flat, slightly upturned curve on the log-
log plot in weak scaling, and a strongly downturned curve
in strong scaling.

Comparing this with numerical tests on various hard-
ware is instructive. Two such are shown in Figs. 4a and 4b
for weak scaling, at a fixed number of iterations. On the
Cray cluster,2 Fig. 4a, the scaling appears roughly as in the
simple model illustrated in Fig. 3, except a small (∼ 10%)
drop when utilising all four processors on a single computa-
tional node instead of one processor on each of four compu-
tational nodes. This drop must be caused by contention of
a shared resource internally to a computational node, most
likely exhaustion of the memory bandwidth. Compare this
with a commodity cluster3 (Fig. 4b) when utilising multiple
cores per computational node: Four cores on a single com-
putational node, 36% drop in efficiency; eight cores, 64%
drop! Clearly, this hardware is not very efficient for such a
data intensive workload.

2 The hexagon Cray XT4 cluster located in Bergen, Norway [20].
3 The bigblue computer cluster at Simula Research Laboratory [3].

0.2

0.5

1.0

1 4 16 64 256

e
ff

ic
ie

n
c
y
 (

lo
g
 s

c
a
le

)

number of processors (log scale)

1 core /node
4 cores/node

(a) Cray XT4 cluster

0.2

0.5

1.0

1 4 16 64 256

number of processors (log scale)

1
2
4
8

(b) Commodity cluster

 0

 0.2

 0.4

 0.6

1 4 16 64 256

M
P

I
fr

a
c
ti
o
n

 (
lin

.
s
c
a

le
)

number of processors (log scale)

Cray XT4
Commodity

(c) Fraction of solution time spent in
MPI communication

Fig. 4 Weak scaling efficiency on two different hardware
platforms

Furthermore, we see a rapid worsening of the efficiency
on the commodity cluster when more than a few tens of pro-
cessors are involved. This does not match our expectation
from the weak scaling curve of Fig. 3, and we therefore sus-
pect it is caused by congestion of the interconnect between
computational nodes. Measuring the time spent in MPI com-
munications shows this to be the major cause, as shown in
Fig. 4c. On the commodity cluster (which uses a GHz Eth-
ernet interconnect), most of the time is indeed spent doing
MPI communication.

The point of this comparison is that the interpretation
of parallel scaling experiments must consider the hardware
they are performed on, since even a good algorithm may
look bad on inadequate hardware. Since we want our algo-
rithm to look good, we perform the remainder of our experi-
ments on the Cray cluster.

5.4 On the number of iterations for the iterative solver

In [18], the present authors estimated the number of itera-
tions of the PgSGS preconditioner on the current problem
as proportional to h−0.4–h−0.5, where h is the characteris-
tic element size. It should be remarked that this estimation
was performed using only a quite small two-dimensional test
problem. There are two questions we need to answer.

(i) Is the number of iterations independent of the number of
processors P in the strong scaling paradigm?

8 Joachim Berdal Haga et al.

e
rr

o
r

(l
o
g

 s
c
a
le

)

iterations (broken linear scale)

1 core
512 cores

smoothed mean, 1 core
smoothed mean, 512 cores

10
-4

10
0

10
4

0 5 200 400 600 800 1000

(a) Convergence of test case III on 1 and 512 processors

30

50

100

200

 0.001 0.01 0.1

it
e
ra

ti
o
n

s
 (

lo
g
 s

c
a

le
)

h (log scale)

2D
3D

c⋅h
–0.45

(b) Iterations of the solver for the
error convergence criterion (case II)

Fig. 5 The dependence of the convergence on the number of
processors (a) and the characteristic grid cell size (b) of the
problem.

(ii) Does the number of iterations keep growing at about the
same rate as previously estimated in the weak scaling
paradigm?

Question (i) only makes sense if some of the operations in
the iterative solver are not independent of P. Generally, the
Conjugate Gradient iteration is independent of P, as is the
block preconditioner. However, the Smoothed Aggregation
single-block preconditioners behave somewhat differently
when P is large. In particular, the high-level aggregates do
not cross processor boundaries [29]. To answer this question,
we compared the convergence of the basin-scale model from
Section 5.7 when it is run in sequential mode and in parallel
using 512 processors. The results, shown in Fig. 5a, indi-
cate that the differences in convergence are minimal. The
smoothed mean of three experiments is shown for each case,
along with the individual experiments.

The answer to question (ii) is found in Fig. 5b; h−0.4–
h−0.5 remains a fair estimate of the order of the solver in the
two-dimensional case. The three-dimensional case is less
clear, owing to insufficient data, but a similar rate is indi-
cated. The test case used to gather this data is described in
Section 5.5, with Q2Q1 Taylor-Hood elements and a factor
10−6 reduction of the error in L2-norm as the convergence
criterion.

Normal layer
Λ = I

Low-permeable layer
Λ = 10−8I

Normal layer
Λ = I

0

0.25

0.75

1
z

x

(a) An embedded low-permeable
layer in a 2D unit square (I–II)

z

x

y

Low-permeable layer

Normal layer

Normal layer

(b) A low-permeable layer
in a 3D unit cube (I–II)

(c) The Vøring basin model, with 16 layers and
1.7 million nodes (III)

Fig. 6 The domains of test cases I–III

5.5 Test case I: Weak scaling

Layered media with severe jumps in material parameters
constitute the normal case in basin modelling. To capture
the essence of the numerical difficulties with such media, we
have constructed a test problem with three layers as shown in
Figs. 6a–6b. We have investigated these (and similar) model
problems in earlier works. A low-permeable layer with van-
ishing fluid storage coefficient S creates an ill-defined prob-
lem for the decoupled pressure equation [16], which can
nevertheless be solved (up to an arbitrary constant) by an
AMG-preconditioned iterative solver. The coupling of the
fluid pressure with displacement makes the problem well-
defined, but when the permeability contrasts are sufficiently
strong (the permeability ratio of adjacent layers is greater
than approximately 104 with S = 0), novel preconditioners
such as the one presented herein are required for conver-
gence [18].

As explained in Section 5.1, we do not care about the
actual boundary conditions, except to note where essential
conditions are in use:

– The displacement equation has essential boundary condi-
tions in the normal direction at the sides and the bottom,

– The fluid pressure equation has essential boundary con-
ditions at the top.

Another difficulty is that of nonphysical oscillations in
the fluid pressure, which may occur in models where low-

A parallel block preconditioner for highly heterogeneous media 9

0.3

0.5

0.7

1.0

1 4 16 64 256

e
ff

ic
ie

n
c
y
 (

lo
g
 s

c
a
le

)

number of processors (log scale)

Iter. crit.
Err. crit.

(a) 2D test (see Fig. 6a)

0.3

0.5

0.7

1.0

1 4 16 64 256

number of processors (log scale)

Iter. crit.
Err. crit.

(b) 3D test (see Fig. 6b)

Fig. 7 Weak scaling in a two- and three-dimensional test
case

permeable layers are present. Pursuant to the results in [17],
we avoid this by using the Taylor-Hood quadrilateral or hex-
ahedral element combination, with second order Lagrange
elements for the displacement and first order Lagrange ele-
ments for the fluid pressure.

In this test case of weak scaling, each processor is re-
sponsible for about 2002 elements in 2D, or about 163 el-
ements in 3D; these are the largest problems that can fit
comfortably in the available 1GB of memory per processor.
Parallel partitioning is performed using the METIS graph
partitioner [22].

The plots in Fig. 7 show the parallel efficiency of the it-
erative solver phase of a single time step of this model, i.e.,
of solving Eq. 12. When using an iteration convergence cri-
terion, the parallel scalability is excellent, with only 10–20%
lower efficiency at 512 processors. Since the ratio of foreign
to interior nodes is much larger in the three-dimensional
case, it is somewhat less efficient than the two-dimensional
case. However, once a more practical error criterion is used,
this is turned upside down: Since the condition number of
the matrix (as a function of the problem size) deteriorates
less rapidly in the three-dimensional case, the actual error-
reduction efficiency is much better in 3D than in 2D. The 2D
efficiency drops below 50% at around 32 processors, while
the 3D efficiency still remains above 50% at 512 processors.

5.6 Test case II: Strong scaling

Test case II uses the same model geometry, parameters, ele-
ments, and partitioning as test case I. The only difference is
that it is fixed in size: 4002 elements in 2D and 263 elements
in 3D. Again, the size is determined by memory considera-
tions: These are the largest problems to fit in memory on a
single 4GB computational node.

We assume that the number of iterations for a given re-
duction in error is nearly independent of the number of pro-
cessors (as discussed in Section 5.4, and in particular Fig. 5a),
and hence that the error and iteration criteria are nearly equiv-
alent; an error criterion with ε = 10−6 is used.

0.3

0.5

0.7

1.0

1 4 16 64 256

e
ff

ic
ie

n
c
y
 (

lo
g
 s

c
a
le

)

number of processors (log scale)

2D
3D

(a) Test case II

0.3

0.5

0.7

1.0

1 4 16 64 256

number of processors (log scale)

assembly
solve

(b) Test case III

Fig. 8 Parallel efficiency in strong scaling tests

The scalability results are shown in Fig. 8a. As we may
expect from the results of test case I, the 3D test drops off
faster in efficiency, but both tests exhibit adequate scalability
up to 256 processors.

We remark that in the strong scaling paradigm, the limits
of scalability are determined to a large degree by the prob-
lem size. A large problem can be subdivided more times be-
fore the number of foreign nodes becomes significant. For
example, with 256 processors the number of foreign nodes
is larger than the number of interior nodes in the 3D test.

5.7 Test case III: Strong scaling on a basin-scale geometry

Our final test case is a realistic model of a sedimentary basin,
derived from a real industry model. Shown in Fig. 6c, the
model consists of 16 distinct layers of sediments, 8.4 · 106

tetrahedral elements, and 1.7 · 106 nodes. No attempt has
been made to make the computational grid more friendly to
finite element calculations, and thus the grid quality is low
in some places — outer/inner radius ratios exceed 100 in
many elements. The material parameters are also from the
real model, and are listed in Table 1.

For this test, equal-order Lagrange tetrahedral elements
P1P1 are used. We believe this to be acceptable, since the
fluid storage coefficient S does not vanish anywhere (see dis-
cussion in Section 5.5 and [17]). Even if it were not accept-
able, Taylor-Hood elements would simply be too expensive
on this grid — the memory requirements would increase al-
most tenfold, to well over a hundred gigabytes. One possi-
bility would be to use a mixed element with extra internal
degrees of freedom, such as the MINI element, and to elim-
inate the internal degrees of freedom at the element level by
static condensation. Such a procedure would reduce the size
of the system to that of the P1P1 combination used here.

The efficiency results are shown in Fig. 8b, with the asso-
ciated runtime (for both the assembly and the solution phase)
in Fig. 9b. A peculiarity with these graphs is that the single-
processor runtime is only estimated, because the memory
requirements for this test case precludes running it on fewer
than five computational nodes. This estimate, which is used

10 Joachim Berdal Haga et al.

Table 1 Material parameters for test case III.

Layer no. S[Pa−1] Λx,Λy[m2Pa−1s−1] Λz[m2Pa−1s−1] ν [·] G[Pa]

1 1 ·10−10 – 2 ·10−10 3 ·10−1 – 7 ·100 8 ·101 – 2 ·103 0.35 5 ·108

2 1 ·10−10 – 2 ·10−10 6 ·101 – 3 ·102 2 ·104 – 1 ·105 0.35 5 ·108

3 1 ·10−10 – 2 ·10−10 3 ·100 – 2 ·101 1 ·102 – 6 ·102 0.35 5 ·108

4 1 ·10−10 – 2 ·10−10 2 ·10−2 – 1 ·10−1 8 ·100 – 3 ·101 0.35 5 ·108

5 1 ·10−10 5 ·10−3 – 7 ·10−2 1 ·100 – 2 ·101 0.35 5 ·108

6 1 ·10−10 2 ·10−6 – 5 ·10−2 5 ·10−4 – 2 ·101 0.35 5 ·108

7 1 ·10−10 1 ·10−2 – 3 ·10−2 3 ·100 – 5 ·100 0.35 5 ·108

8–9 1 ·10−10 2 ·10−6 – 1 ·10−4 5 ·10−4 – 4 ·10−2 0.35 5 ·108

10 1 ·10−10 2 ·10−6 – 4 ·10−4 5 ·10−4 – 1 ·10−1 0.35 5 ·108

11 1 ·10−10 2 ·10−3 – 5 ·10−2 2 ·10−1 – 6 ·100 0.35 5 ·108

12 2 ·10−10 5 ·10−2 – 8 ·100 5 ·100 – 8 ·102 0.25 8 ·108

13 1 ·10−10 2 ·10−3 – 6 ·10−3 4 ·10−1 – 1 ·100 0.35 5 ·108

14 6 ·10−11 5 ·10−14 5 ·10−14 0.40 1 ·109

15 2 ·10−10 3 ·10−1 – 3 ·102 7 ·100 – 6 ·103 0.20 9 ·108

16 1 ·10−10 2 ·10−2 – 3 ·10−2 3 ·100 – 6 ·100 0.35 5 ·108

10
1

10
2

10
3

1 4 16 64 256

w
a
llt

im
e
 [
s
]
(l
o
g
 s

c
a
le

)

number of processors (log scale)

Perfect
2Dx1
2Dx4
3Dx1
3Dx4

(a) Test case II

10
2

10
3

10
4

1 4 16 64 256

number of processors (log scale)

Perfect (est.)
x1
x4

(b) Test case III

Fig. 9 Actual and perfect-scaling runtime for one time step
(assembly and solve), using one (x1) and four (x4) cores per
computational node

both to determine the multiplicative factor T (1) in the effi-
ciency and to determine the “perfect scaling” line in Fig. 9b,
is made by simply subtracting the MPI communication over-
head from the five-processor aggregate runtime.

6 Concluding remarks

We have implemented and tested a parallel block precon-
ditioner for the finite element discretisation of a fully cou-
pled 3D problem of fluid flow in elastic porous media. The
parallel preconditioner targets especially the challenges of
real-world geological problems: unstructured computational
grids, and heterogeneous material parameters with severe
jumps between geological layers. As the numerical results
in previous sections show, we achieve strong scaling results
for a realistic large-scale basin model that are quite accept-
able on up to five hundred processors, thereby making sim-
ulations on this scale practical. The performance of this par-
allel block preconditioner is robust with respect to hetero-
geneities and severe grid distortion.

The smaller strong scaling case (test case II) shows an
earlier drop-off in efficiency. This may be expected from
the fact that a smaller problem has a higher ratio of foreign
nodes to interior nodes, which increases relative communi-
cation overhead as well as local overhead.

The results for weak scaling can be interpreted in two
different ways. On one hand, the parallel scalability for a
fixed number of iterations is very good, and should easily
scale into thousands of processors (limited mostly by the per-
processor problem size, as alluded to in the strong-scaling
case). On the other hand, the preconditioner is not optimal,
in that its performance degrades with problem size (see Fig. 5b).
This degradation is rather small, but it still overwhelms the
parallel overhead, and thus the weak scalability (particularly
in 2D) is less good when using an error criterion for conver-
gence. Further research into improving the size-dependence
of the preconditioner may be warranted.

As our main result, we demonstrate that good parallel
scaling is achievable on a complex problem in coupled ge-
omechanics, using a standard iterative solver and state-of-
the-art general single-block preconditioners, combined in a
novel fashion.

Acknowledgements The authors would like to thank professor Xing
Cai at Simula, who implemented the initial parallel simulator, and who
has been very forthcoming with ideas and assistance for using and ex-
tending the Diffpack parallel framework. We also thank Statoil ASA
for their support, both financial and in access to their geological models
and expertise. We are grateful to the Norwegian Metacenter for Compu-
tational Science (NOTUR) for allowing us the use of the hexagon com-
putational cluster. This work is supported by a Center of Excellence
grant from the Norwegian Research Council to Center for Biomedical
Computing at Simula Research Laboratory.

A parallel block preconditioner for highly heterogeneous media 11

References

1. Adams, M.: Evaluation of three unstructured multigrid
methods on 3D finite element problems in solid mechan-
ics. Int. J. Numer. Methods Eng. 55, 519–534 (2002).
DOI 10.1002/nme.506

2. Adams, M.F., Bayraktar, H.H., Keaveny, T.M., Pa-
padopoulos, P.: Ultrascalable implicit finite element
analyses in solid mechanics with over a half a billion
degrees of freedom. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC2004), p. 34. IEEE
Computer Society (2004)

3. The Simula computer cluster bigblue. URL
http://simula.no/research/sc/cbc/events/

2008/081105-slides/bigblue-intro.pdf

4. Biot, M.A.: General theory of three-dimensional con-
solidation. J. Appl. Phys. 12(2), 155–164 (1941). DOI
10.1063/1.1712886

5. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel,
T., McCormick, S., Ruge, J.: Adaptive smoothed aggre-
gation (αSA). SIAM J. Sci. Comput. 25(6), 1896–1920
(2004). DOI 10.1137/S1064827502418598

6. Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozdag,
D., Heaphy, R.T., Riesen, L.A.: Hypergraph-based dy-
namic load balancing for adaptive scientific compu-
tations. In: Proc. of 21st International Parallel and
Distributed Processing Symposium (IPDPS’07). IEEE
(2007)

7. Chow, E., Falgout, R.D., Hu, J.J., Tuminaro, R., Yang,
U.M.: A survey of parallelization techniques for multi-
grid solvers. In: M.A. Heroux, P. Raghavan, H.D. Si-
mon (eds.) Parallel Processing for Scientific Computing,
pp. 179–202. SIAM (2006)

8. URL http://www.diffpack.com/. Library for nu-
merical solution of PDEs from inuTech GmbH

9. Doi, S., Washio, T.: Ordering strategies and related tech-
niques to overcome the trade-off between parallelism
and convergence in incomplete factorizations. Paral-
lel Comput. 25, 1995–2014 (1999). DOI 10.1016/
S0167-8191(99)00064-2

10. Elman, H.C., Howle, V.E., Shadid, J.N., Shuttleworth,
R., Tuminaro, R.S.: A taxonomy and comparison of par-
allel block multi-level preconditioners for the incom-
pressible Navier-Stokes equations. J. Comput. Phys.
227(3), 1790–1808 (2007). DOI 10.1016/j.jcp.2007.09.
026

11. Elman, H.C., Howle, V.E., Shadid, J.N., Tuminaro,
R.S.: A parallel block multi-level preconditioner for the
3D incompressible Navier-Stokes equations. J. Com-
put. Phys. 187(2), 504–523 (2003). DOI 10.1016/
S0021-9991(03)00121-9

12. Fletcher, R.: Conjugate gradient methods for indefi-
nite systems. In: G. Watson (ed.) Numerical Analy-

sis, Lecture Notes in Mathematics, vol. 506, pp. 73–89.
Springer (1976). DOI 10.1007/BFb0080116

13. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S.,
Sala, M.G.: ML 5.0 smoothed aggregation user’s guide.
Tech. Rep. SAND2006-2649, Sandia National Labora-
tories (2006). URL http://software.sandia.gov/

trilinos/packages/ml/

14. George, A., Ng, E.: On the complexity of sparse QR
and LU factorization of finite-element matrices. SIAM
J. Sci. Stat. Comput. 9, 849 (1988). DOI 10.1137/
0909057

15. Hackbush, W.: Iterative Solution of Large Sparse Sys-
tems of Equations. Springer-Verlag (1995)

16. Haga, J.B., Langtangen, H.P., Nielsen, B.F., Osnes,
H.: On the performance of an algebraic multigrid pre-
conditioner for the pressure equation with highly dis-
continuous media. In: B. Skallerud, H.I. Andersson
(eds.) Proceedings of MekIT’09, pp. 191–204. NTNU,
Tapir (2009). URL http://simula.no/research/

sc/publications/Simula.SC.568

17. Haga, J.B., Langtangen, H.P., Osnes, H.: On the
causes of pressure oscillations in low-permeable and
low-compressible porous media (2011). URL http:

//simula.no/publications/Simula.simula.18.
Submitted to International Journal for Numerical and
Analytical Methods in Geomechanics

18. Haga, J.B., Osnes, H., Langtangen, H.P.: Efficient
block preconditioners for the coupled equations of
pressure and deformation in highly discontinuous
media. Int. J. Numer. Anal. Methods Geomech.
(2010). URL http://simula.no/research/sc/

publications/Simula.SC.660. Accepted for publi-
cation.

19. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra,
R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G.,
Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M.,
Williams, A., Stanley, K.S.: An overview of the Trili-
nos project. ACM Trans. Math. Softw. 31(3), 397–423
(2005). DOI 10.1145/1089014.1089021

20. The NOTUR computer cluster hexagon. URL http:

//www.notur.no/hardware/hexagon

21. Joubert, W., Cullum, J.: Scalable algebraic multigrid
on 3500 processors. Electron. Trans. Numer. Anal. 23,
105–128 (2006)

22. Karypis, G., Schloegel, K., Kumar, V.: ParMETIS par-
allel graph partitioning and sparse matrix ordering li-
brary, version 3.1. University of Minnesota, Minneapo-
lis (2003). URL http://glaros.dtc.umn.edu/

gkhome/metis/parmetis/overview

23. Langtangen, H.P.: Computational Partial Differential
Equations: Numerical Methods and Diffpack Program-
ming, 2nd edn. Springer (2003)

http://simula.no/research/sc/cbc/events/2008/081105-slides/bigblue-intro.pdf
http://simula.no/research/sc/cbc/events/2008/081105-slides/bigblue-intro.pdf
http://www.diffpack.com/
http://software.sandia.gov/trilinos/packages/ml/
http://software.sandia.gov/trilinos/packages/ml/
http://simula.no/research/sc/publications/Simula.SC.568
http://simula.no/research/sc/publications/Simula.SC.568
http://simula.no/publications/Simula.simula.18
http://simula.no/publications/Simula.simula.18
http://simula.no/research/sc/publications/Simula.SC.660
http://simula.no/research/sc/publications/Simula.SC.660
http://www.notur.no/hardware/hexagon
http://www.notur.no/hardware/hexagon
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

12 Joachim Berdal Haga et al.

24. URL http://www.petromod.com/. Petroleum sys-
tems modelling software from Schlumberger Aachen
Technology Center

25. Phoon, K.K., Toh, K.C., Chan, S.H., Lee, F.H.: An effi-
cient diagonal preconditioner for finite element solution
of Biot’s consolidation equations. Int. J. Numer. Meth-
ods Eng. 55, 377–400 (2002). DOI 10.1002/nme.500

26. Thakur, R., Gropp, W.: Improving the performance of
collective operations in MPICH. Recent Adv. Parallel
Virtual Mach. Message Passing Interface pp. 257–267
(2003)

27. Toh, K.C., Phoon, K.K., Chan, S.H.: Block precondi-
tioners for symmetric indefinite linear systems. Int. J.
Numer. Methods Eng. 60, 1361–1381 (2004). DOI
10.1002/nme.982

28. Tuminaro, R.S., Tong, C.: Parallel smoothed aggrega-
tion multigrid: Aggregation strategies on massively par-
allel machines. In: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing. IEEE Computer Soci-
ety (2000). DOI 10.1109/SC.2000.10008

29. Yang, U.M.: Parallel algebraic multigrid methods—
high performance preconditioners. In: A.M. Bruaset,
A. Tveito (eds.) Numerical Solution of Partial Differ-
ential Equations on Parallel Computers, pp. 209–236.
Springer (2006). DOI 10.1007/3-540-31619-1_6

http://www.petromod.com/

	Introduction
	Mathematical model
	Block preconditioning methods
	Software framework
	Numerical experiments
	Concluding remarks

