
Multi-homed fat-tree routing with InfiniBand

Abstract—For clusters where the topology consists of a fat-
tree or more than one fat-tree combined into one subnet, there
are several properties that the routing algorithms should sup-
port, beyond what exists today. One of the missing properties is
that current fat-tree routing algorithm does not guarantee that
each port on a multi-homed node is routed through redundant
spines, even if these ports are connected to redundant leaves. As
a consequence, in case of a spine failure, there is a small window
where the node is unreachable until the subnet manager has
rerouted to another spine.

In this paper, we discuss the need for independent routes for
multi-homed nodes in fat-trees by providing real-life examples
when a single point of failure leads to complete outage of a
multi-port node. We present and implement the methods that
may be used to alleviate this problem and perform simulations
that demonstrate improvements in performance, scalability,
availability and predictability of InfiniBand fat-tree topologies.
We show that our methods not only increase the performance
by up to 52.6%, but also, and more importantly, that there is
no downtime associated with spine switch failure.

I. INTRODUCTION

The fat-tree topology is one of the most common topolo-
gies for high performance computing clusters today where,
for example, it is used in the currently fastest supercomputer
in world - MilkyWay-2 [1]. Moreover, for clusters based
on InfiniBand (IB) technology the fat-tree is the dominating
topology. Fat-tree IB systems include large installations such
as Stampede, TGCC Curie and SuperMUC [2]. There are
three properties that make fat-trees the topology of choice for
high performance interconnects: deadlock freedom, the use
of a tree structure makes it possible to route fat-trees with-
out special considerations for deadlock avoidance; inherent
fault-tolerance, the existence of multiple paths between
individual source destination pairs makes it easier to handle
network faults; full bisection bandwidth, the network can
sustain full speed communication between the two halves
of the network.

For fat-trees, as with most other topologies, the routing
algorithm is crucial for efficient use of the underlying
topology. The popularity of fat-trees in the last decade led
to many efforts to improve their routing performance. These
proposals, however, have several limitations when it comes
to flexibility and scalability. This also includes the current
approach that the OpenFabrics Enterprise Distribution [3],
the de facto standard for InfiniBand system software, is
based on [4], [5]. One problem is the static routing used
by IB technology that limits the exploitation of the path
diversity in fat-trees as pointed out by Hoefler et al. in [6].
Another problem with the current routing is its shortcom-
ings when routing oversubscribed fat-trees as addressed by
Rodriguez et al. in [7]. A third problem, and the one that

we are analyzing in this paper, is that for hosts with two or
more host-channel adapter ports connected to the same fat-
tree-based subnet, the routing algorithm does not guarantee
that independent (relative to single points of failure) root
switches are chosen for the corresponding down paths.

In this paper, we discuss the need for independent routes
for multi-homed nodes in fat-trees by providing real-life
examples when a single point of failure led to fatal con-
sequences. We present and implement the methods that may
be used to alleviate this problem and perform experiments
and simulations that demonstrate the usefulness of our
approach. There are two key aspects of the redundant path
implementation:

• Identifying paths that need to be routed in a mutually
redundant way.

• Ensuring that the paths are in fact redundant.
The rest of this paper is organized as follows: we discuss

related work in Section II and follow with introducing the
InfiniBand Architecture and fat-tree routing in Section III.
We continue with a discussion of our enhancements in
Section IV. Next, we describe the experimental setup in Sec-
tion V followed by the experimental analysis in Section VI.
Finally, we conclude in Section VII.

II. RELATED WORK

There was much research done in the topics of fat-tree
routing, multipathing, dynamic reconfiguration and fault-
tolerance. First of all, there are proposals [4] and proprietary
implementations of adaptive routing algorithms available [8]
that extend IB’s destination routing capabilities such that
traffic directed to a given endpoint can traverse different
paths through the network. However, the presented adaptive
routing is reactive (loss of throughput during the adaptation
phase), not deterministic, is only available for new switch
units (if some switches do not support adaptive routing, it
leads to overall slowdown of the adaptive routing manager)
and is not yet widely available. Additionally, it does not
give any guarantee that the chosen paths will be mutually
independent and some transport layers like IB Reliable
Connected (RC) cannot be routed in an adaptive way due to
the possible out of-order delivery [9].

Next, there were proposals to use other routing algo-
rithms [10]–[13] to achieve multi-pathing. However, when
these algorithms are applied to regular topologies like fat-
trees, they may not take all the properties of a regular topol-
ogy into account and cannot deliver optimal performance,
and, again, there is no guarantee that a multi-homed host
can be reached using independent paths.



Furthermore, there were proposals to add LID Mask
Control (LMC) support to fat-tree routing [14], however,
these attempts failed because the Open Subnet Manager
(OpenSM) still does not support LMC for fat-tree routing.
Moreover, LMC is not a solution in a multi-homed environ-
ment and it does not guarantee that the chosen path will use
independent switches.

Later, there was research done on multipath routing for
Extended Generalized Fat-Trees (XGFTs) [15]. However,
it was shown that XGFTs cannot be used to represent
many real-life topologies [9] and the aim of that work is
purely theoretical as the authors failed to consider how real
enterprise systems are built.

Lastly, there were several proposals to use oblivious
routing in fat-tree systems [5], [7], [16]–[18]. The most
successful one is [5], which is the default fat-tree routing
for OpenSM. These routing algorithms assume that there are
enough links in a fat-tree to reconfigure the routing without
much performance loss in case of failures. However, all of
these algorithms work on the port level, that is, they treat
each port as an independent node and do not consider the
extra fault-tolerance possibilities that are provided by the
additional ports at the same node. We will show that using
such an oblivious routing algorithm may lead to a total lack
of connectivity even in cases where a node is multi-homed.

Unlike previous research on IB routing algorithms, we
discuss and analyze various enterprise fat-trees where nodes
are multi-homed, i.e. a single node is connected to two
or more parts of the fat-tree through multiple ports. We
focus on real-life enterprise systems where fault-tolerance,
reachability and performance are of the utmost importance.
Our work is partially based on [19], [20] where we also
analyzed fat-trees, however, we did not focus on the multi-
homing aspect. In this work we widen the scope and, first,
consider the enterprise fat-trees with multi-homed nodes
and, second, propose and evaluate a fault-tolerant routing
algorithm.

III. TECHNICAL BACKGROUND

The InfiniBand Architecture (IBA) supports a two-layer
topological division. At the lower layer, IB networks are
referred to as subnets, where a subnet consists of a set of
hosts interconnected using switches and point-to-point links.
At the higher level, an IB fabric constitutes one or more
subnets, which are interconnected using routers. Hosts and
switches within a subnet are addressed using LIDs and a
single subnet is limited to 49151 LIDs. Whereas LIDs are
the local addresses valid only within a subnet, each IB device
also has a 64-bit Global Unique IDentifier (GUID) burned
into its non-volatile memory. A GUID is used to form a GID
- an IB layer-3 address. A GID is created by concatenating a
64-bit subnet ID with the 64-bit GUID to form an IPv6-like
128-bit address. In this paper, we will focus on port GUIDs,
i.e. the GUIDs assigned to every port connected to the IB
fabric.

A. Subnet Management

Every IB subnet requires at least one subnet manager
(SM), which is responsible for initializing and bringing up
the network, including the configuration of all the IB ports
residing on switches, routers, and host channel adapters
(HCAs) in the subnet. At the time of initialization the SM
starts in the discovering state where it does a sweep of the
network in order to discover all switches and hosts. During
this phase it will also find other SMs and negotiate who
should be the master SM. When this phase is completed the
SM enters the master state. In this state, it proceeds with LID
assignment, switch configuration, routing table calculations
and deployment, and port configuration. At this point the
subnet is up and ready for use. After the subnet has been
configured, the SM is responsible for monitoring the network
for changes.

B. Fat-Tree Routing

A major part of the SM’s responsibility is routing table
calculations. Routing of the network aims at obtaining full
connectivity, deadlock freedom, and proper load balancing
between all source and destination pairs in the local subnet.
Routing tables must be calculated at network initialization
time and this process must be repeated whenever the topol-
ogy changes in order to update the routing tables and ensure
optimal performance.

In case of the fat-tree routing algorithm, the routing
function iterates over an array of all leaf switches. When
a leaf switch is selected, for each end-node port connected
to that switch (in port numbering sequence), the routing
function routes towards that node. All of that is performed by
route to cns function, for which a pseudocode is presented
in Algo. 1. When routing the particular LIDs, the function
goes up one level to route the downgoing paths, and next, on
each switch port, it goes down to route the upgoing paths.
This process is repeated until the root switch level is reached.
After that the paths towards all nodes are routed and inserted
into the linear forwarding tables (LFTs) of all switches in
the fabric. The function route downgoing by going up() is
a recurrence function whose main task is to balance the paths
and call the route upgoing by going down function, which
routes the upward paths in the fat-tree towards destination
through the switch from which it was invoked.

Algorithm 1 route to cns()

Require: Addressing is completed
Ensure: All hca ports are routed

1: for swleaf = 0 to max leaf sw do
2: for swleaf .port = 0 to max ports do
3: hca lid = swleaf .port− > remote lid
4: swleaf .routing table[hca lid] = swleaf .port
5: route downgoing by going up()
6: end for
7: end for



Figure 1: Test results from a real cluster

There are several problems with the design of
route to cns() function. First, it is oblivious and routes the
end-ports without any consideration as to which node they
belong. Second, it depends on the physical port number for
routing. This is a major problem, and a possible consequence
is presented on Fig. 1 which depicts a scenario with four
two-port nodes connected to a small fat-tree. In this case,
ports H1, H2, H5 and H6 are connected to port 1 on each
switch while the rest of the ports (H3, H4, H7 and H8) are
connected to port 2 on each switch. The downward routes are
presented for each root switch. Because the current fat-tree
routing routes on leaf switch basis, after routing 4 end-ports
(traversing through the second leaf switch in this case), it
will wrap around and start assigning the paths again from
the leftmost root switch. Therefore, each pair of end-ports
(H1 and H2, H3 and H4, H5 and H6, and H7 and H8)
will be routed through the same root switch. This is a very
popular scenario that provides the user with counter-intuitive
behavior: a node that has built-in physical fault-tolerance (2
end-ports connected to different switches) has a single point
of failure that is one of the root switches. There are many
variations of this problem and, depending on the physical
cabling, the single point of failure may be located on any
switch in a fat-tree.

C. Subnet Reconfiguration

During normal operation the SM performs periodic light
sweeps of the network to check for topology changes. If a
change is discovered during a light sweep or if a message
(trap) signaling a network change is received by the SM,
it will reconfigure the network according to the changes
discovered. The reconfiguration includes the steps used dur-
ing initialization. Whenever the network changes (e.g. a link
goes down, a device is added, or a link is removed) the SM
must reconfigure the network accordingly. Reconfigurations
have a local scope, i.e. they are limited to the subnets in
which the changes occurred, which means that segmenting
a large fabric with routers limits the reconfiguration scope.

IB is a lossless networking technology, and under certain
conditions it may be prone to deadlocks [21], [22]. Dead-
locks occur because network resources such as buffers or
channels are shared and because IB is a lossless network

technology, i.e. packet drops are usually not allowed. The
necessary condition for a deadlock to happen is the creation
of a cyclic credit dependency. This does not mean that when
a cyclic credit dependency is present, there will always be
a deadlock, but it makes the deadlock occurrence possible.

IV. MOTIVATION AND DESIGN

A. Motivation
There are three main reasons that motivated us to create a

multi-homed fat-tree routing and all come from real-world
experience that we gained when designing and working with
enterprise IB fabrics.

First, as it was mentioned before, the current fat-tree
routing is oblivious whether ports belong to the same node or
not. This makes the routing depend on the cabling and may
be very misleading to the fabric administrator, especially
when recabling is not possible due to a fixed cable length
as often happens in enterprise IB systems. Furthermore, this
requires the fabric designers to connect the end-nodes in
such a way that will make the fat-tree routing algorithm
route them through independent paths. Whereas this is a
simple task for very small fabrics, when a fabric grows, it
quickly becomes infeasible. Additionally, the scheme will
break in case of any failure as usually the first thing that
the maintenance does when a cable or a port does not work,
is to reconnect the cable to another port, which changes the
routing.

Second, due to the bandwidth limitations of the 8x PCI
Express 2.0, it does not make sense to utilize both HCA
ports on the same node with QDR speeds. This means
that one of the ports is the active port and the second one
is a passive port. The passive port will start sending and
receiving traffic only if the original active port fails. Only
with the advent of 8x PCI Express 3.0, where the bandwidth
is doubled compared to 8x PCI Express 2.0, two QDR ports
may be used simultaneously on the same card, which allows
all ports connected to the fabric to be in an active state.
These hardware limitations (active-passive case) mean that
for today’s routing only the active ports are important when
routing and balancing the traffic because the passive ports do
not generate anything (apart from management packets). The
classic fat-tree routing algorithm deals with such a situation
in an oblivious manner. The assumption here is that every
port connected to the fabric is independent and has the same
priority when being routed and what matters is the switch
number and switch port number to which the node port
is connected. Multi-homed fat-tree routing algorithm is not
oblivious in such a case and first routes the active port on
each node, therefore making sure that the path for that port
will be optimal.

Third, because of doubled bandwidth of PCI Express 3.0,
all ports at all nodes need to be considered with equal
weights when doing routing. Classic fat-tree routing is able
to do that, since it is the original assumption, however, it
does not provide for any fault-tolerance that comes from
the fact that each node has two or more ports. It means



that even though the node ports are connected to different
leaves, their paths may meet higher in the fabric and a single
point of failure may exist. Therefore, to obtain optimal fault-
tolerance, it is necessary to remove the single point of failure
by making sure that ports belonging to the same node take
mutually independent paths, which is what mFtree routing
does. What needs to be taken into account is to distinguish
between a single point of failure that is always fatal for an
end-port (local link, local leaf switch) and a single point of
failure that can eventually be recovered from by rerouting.
In other words, we wanted to ensure that no single point of
failure will impact both redundant paths even for a very short
time before the SM has been able to reroute and reconfigure.

B. Design

As mentioned earlier, to obtain multi-homed routing in
fat-tree topologies, one must abandon the fat-tree routing
algorithm that is optimized for shift all-to-all communication
patterns. In other words, a new routing logic is needed to
make the routing algorithm less oblivious than the classic
fat-tree routing and keep the same level of determinism.

The sample pseudocode for the auxiliary function
route multihomed cns() is presented in Algo. 2
and Algo. 3 presents the code for the main function
route hcas. There were also changes done in
route downgoing by going up() that are presented
in4. The code for auxiliary functions is presented, so that
the exact flow of the algorithm can be analyzed.

Algorithm 2 route multihomed cns()

Require: Addressing is completed
Ensure: All hca ports are routed through independent

spines
1: for swleaf = 0 to leaf sw num do
2: for swleaf .port = 0 to max ports do
3: hca node = swleaf .port− > remote node
4: if hca node.routed == true then
5: continue
6: end if
7: route hcas(hca node)
8: end for
9: end for

As seen on Algo. 2, there are many similarities when
compared to the classic fat-tree routing. An iteration is done
over all leaf switches and then over all leaf switch ports, so
the routing can be deterministic. However, the first major
difference is that mFtree routing does not simply take the
LID of the remote port connected to the leaf switch, but uses
the whole node as a parameter to the main routing, which
is presented on Algo. 3.

Having the end-node, we iterate over all its ports,
and route each port in a usual way using the
route downgoing by going up() function. When all
ports on the node are routed, we mark the node as routed,

Algorithm 3 route hcas(hca)

Require: Node that is to be routed
Ensure: All hca ports belonging to the node with hca lid

are routed
1: for hca node.port = 0 to port num do
2: hca lid = hca node.port− > lid
3: swleaf = hca node.port− > remote node
4: swleaf .port = hca node.port− >

remote port number
5: swleaf .routing table[hca lid] = swleaf .port
6: route downgoing by going up()
7: end for
8: hca node.routed = true
9: clear redundant flag()

so that when that node is encountered on another leaf
switch, it is not routed. For 2-port nodes, this saves half of
the loop iterations.

Algorithm 4 route downgoing by going up())

Require: Current hop switch
Ensure: Best effort is done to find an upward redundant

switch
Ensure: Switches on the path are marked with a redundant

flag
1: groupmin = 0
2: redundant group = 0
3: for port group = 0 to port group num do
4: if groupmin == 0 then
5: if groupmin− > remote node.redundant then
6: groupmin = port group
7: end if
8: else if port group.cntdown < groupmin.cntdown

then
9: groupmin = port group

10: if groupmin− > remote node.redundant then
11: min redundant group = groupmin

12: end if
13: end if
14: end for
15: if groupmin == 0 then
16: fallback normal routing(hca lid)
17: else if groupmin− > remote node.redundant then
18: groupmin = min redundant group
19: groupmin− > remote node.redundant = false
20: end if

A major change was done to the algorithm
that selects the next-hop upward switch in
route downgoing by going up() function. Normally,
the port group with lowest downward counters is selected,
but in the case of mFtree algorithm, redundancy is



Figure 2: Experimental cluster

considered to be the decisive factor. Upward node can
only be chosen as the next-hop if it does not route any
other ports belonging to that end-node (in other words,
the redundant flag is true). The redundant flag is cleared
before the next end-node is routed. If there are no nodes
that are redundant as may happen in heavily oversubscribed
fabrics or in case of link failures, mFtree falls back to
normal fat-tree routing.

We may observe the similarity of this routing function to
the routing function presented in Algo. 1.

V. EXPERIMENT SETUP

To evaluate our proposal we have used a combination of
simulations and measurements on a small IB cluster. In the
following subsections, we present the hardware and software
configuration used in our experiments.

A. Hardware Setup
Our test bed consisted of four two-port nodes and six

switches. Each node is a Sun Fire X2200 M2 server [23]
that has a dual port Mellanox ConnectX DDR HCA with
an 8x PCIe 1.1 interface, one dual core AMD Opteron
2210 CPU, and 2GB of RAM. The switches were: two
36-port Sun Datacenter InfiniBand Switch 36 [24] QDR
switches which acted as the fat-tree roots; two 36-port
Mellanox Infiniscale-IV QDR switches [25], and two 24-
port SilverStorm 9024 DDR switches [26], all of which
acted as leaves with the nodes connected to them. The
port speed between the QDR switches was configured to
be 4x DDR, so the requirement for the constant bisectional
bandwidth in the fat-tree was assured. The cluster was
running the Rocks Cluster Distribution 5.3 with kernel
version 2.6.18-164.6.1.el5-x86 64, and the IB subnet was
managed using a modified version of OpenSM 3.2.6 (with
and without our mFtree implementation). The topology on
which we performed the measurements is shown in Fig. 2.
We used perftest, a tool provided with OFED, to measure the
downtime that occurred when one of the spine switches went
down. Perftest was modified to support regular bandwidth
reporting and continuous sending of traffic at full link
capacity.

B. Simulation Setup
To perform large-scale evaluations and verify the scala-

bility of our proposal, we use an InfiniBand model for the
OMNEST simulator [27] (OMNEST is a commercial version

of the OMNeT++ simulator). The IB model consists of a set
of simple and compound modules to simulate an IB network
with support for the IB flow control scheme, arbitration over
multiple virtual lanes, congestion control, and routing using
linear routing tables. The model supports instances of HCAs,
switches and routers with linear routing tables. The network
topology and the local routing tables were generated using
OpenSM coupled with ibsim and IBMgtSim and converted
into OMNEST readable format in order to simulate real-
world systems.

In each of the simulations, we used a link speed of
20 Gbit/s (4x DDR) and Maximum Transfer Unit (MTU)
equal to 2048 bytes. Furthermore, we use uniform and non-
uniform (shift and recursive-doubling) traffic patterns. For
the uniform traffic pattern, each source randomly chooses a
destination from the list of available destinations. This may
lead to a situation, where more than one source chooses the
same destination at the same time, which may cause slight
congestion. The probability of this happening is inversely
proportional to the number of end-ports, and in large fabrics
is quite low.

The non-uniform traffic patterns can represent collective
communications and are named shift and recursive-doubling.
The patterns were simulated by translating their algorithm
into sequences of destinations specific for each end-port and
their implementation was described in a paper by Zahavi [9].
A random node-ordering of the MPI node-number to clus-
ter end-ports was used in the translation and during the
simulation, the end-ports progress through their destinations
sequence independently when the previous message has been
sent to the wire, which is one of the features of the IB model
implemented in OMNEST simulator.

C. Topologies

There were 5 simulation topologies of varying size. There
were two 648-port fat-trees: the 2-stage one built with 18
spines and 36 leaves, and the 3-stage one built with 18
spines, 36 middle-stage switches and 27 2-switch modules
(54 separate leaf switches). Each switch in a 2-switch
module has 36 ports: 12 ports connected to end-nodes, 12
horizontal links connected to the neighboring switch in the
module and 12 uplinks to the middle-stage switches. Next,
the 3-stage 432-port and 216-port topologies are variations
of the 3-stage 648-port fabric. The 432-port and 216-port
fabrics are 2/3 and 1/3 of size the original 3-stage 648-
port fabric, respectively. Last, the 384-port fabric is 2-stage
oversubscribed fat-tree that consists of 8 spines and 16 leaf
switches. The oversubscription ratio is 1.33:1.

VI. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements
on an experimental cluster and simulations of large-scale
topologies. For the cluster measurements we use the average
per node throughput and time as our main metrics. However,
we are not comparing the network performance here, but the
network downtime is of main interest. For the simulations
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Figure 3: Results from the hardware cluster

we use the achieved average throughput per end node as the
metric for measuring the performance of the mFtree algo-
rithm on the simulated topologies. In both the experimental
cluster and in the simulations, all traffic flows are started at
the same time and they are based on transport layer of the
IB stack.

A. Experimental results

The main aim of the experiment was to show that ap-
plications experience less downtime with mFtree than with
the classic fat-tree routing algorithm. In this experiment we
rebooted the switch S2 and measured how much time it took
before the application started sending the traffic through the
backup path. The whole experiment was conducted with two
flows present in the network: port H4 was sending traffic to
port H2 and H3 was sending traffic to port H1. For classic
fat-tree routing, both flows: H4→ H1 and H3→ H2 were
routed through S1 whereas for mFtree the flow H4 → H1
was routed through S1 and flow H3 → H2 was routed
through S2. In each case, we failed (rebooted) switch S1 and
measured how much time passed before normal operation
was resumed.

The results are presented on Fig. 3. We observe that for
mFtree routing, only half of the throughput (from 3795 MB/s
down to 1897 MB/s) is lost as only one flow needs to be
rerouted. For classic fat-tree routing, we observe that both
flows must be rerouted, which means that even though a
node receiving the traffic has two independent ports, a failure
of a single switch makes the whole node unreachable.

The observation that needs to be highlighted is the fact
that there is no downtime for connectivity between any pair
of nodes with multiple ports operating in active-active mode
when using the mFtree routing algorithm. The classic fat-
tree routing engine that routes both traffic pairs through the
same spine switch experiences a complete loss of service
despite of the fact that the destination node has multiple
ports. This means that the classic fat-tree routing algorithm
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Figure 4: Test results for uniform traffic
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Figure 5: Test results shift traffic pattern

is unable to use multiple ports on a node to provide for
additional fault-tolerance.

B. Simulation results

The simulations were to show that using our routing al-
gorithm does not deliver worse performance than the classic
fat-tree routing algorithm when the tree size increases. We
performed the simulations in an active-active mode, which
means that no port was unused (passive).

The uniform traffic, for which the results are presented
on Fig. 4, is considered to be very synthetic and not
demanding on the routing algorithm. However, we used
it to show the baseline performance as this traffic pattern
has a predictable and easily understandable behavior, and
is general rather than specific to a given application. Under
uniform traffic conditions, where each source chooses the
destination from all other possible destinations (apart from
the ports located on the same end-node), the performance



2-stage 648-port 3-stage 648-port 3-stage 432-port 3-stage 216-port 2-stage 384-port

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0

Topology

A
v
e
ra

g
e
 p

e
r 

n
o
d
e
 b

a
n

d
w

id
th

 (
M

B
/s

)
0

1
1
6
2

1
4
6
0

1
6
0
5

1
6
3
8

1
2
8
4

1
3
7
6

1
5
2
8

1
6
5
4

4
3
9

6
7
0

ftree routing algorithm mFtree routing algorithm

Figure 6: Test results for recursive traffic pattern

of both the routing algorithms is equal. This means that
mFtree routing algorithm does not create any additional
overhead when routing and we do not sacrifice performance
for redundancy.

The results for the shift traffic pattern shown on Fig. 5
start to exhibit slight differences between the two algorithms.
The classic fat-tree routing, which was specifically designed
for the shift traffic pattern delivers slightly better perfor-
mance (on average 82 MB/s or 4.5% higher per node) only
on a 2-stage 648-port fat-tree. However, for any 3-stage
fabric, it is the mFtree routing algorithm that delivers slightly
better performance (ranging from 0.8% to 1.8% on average
per node). For the oversubscribed 384-port fabric the perfor-
mance delivered by mFtree and classic fat-tree is equal. The
slight performance increase that is observed for mFtree is
caused by better traffic distribution while traversing middle-
stage switches in the upward direction. The 3-stage fabrics
are built in such a way that each pair of interconnected leaf
switches share four middle-stage switches. The end-nodes
are connected in such a way that end-port:A is connected
to the first leaf switch and the end-port:B is connected to
the second leaf switch. What happens is that for the classic
fat-tree routing, when routing in the upward direction, the
traffic to port A and port B may traverse the same switch and
even use the same link, which leads to slight congestion. For
mFtree routing this does not happen as the traffic for end-
port:A and end-port:B is separated from each other from the
very beginning, which means that the traffic distribution is
better. However, the influence of this phenomenon is minor
because such a traffic overlap does not occur often for the
shift traffic pattern we generated.

The doubling recursive pattern, for which the results are
shown on Fig. 6, is the most demanding one from the
patterns we tested, and the differences in performance here
are significant. What is first noticeable is that the overall
performance is lower for both algorithms. However, when

Table I: Execution time comparison for different algorithms in seconds.

Topology minhop DFSSSP ftree mFtree
2-stage 384-port 5.12 5.04 0.02 0.02
2-stage 648-port 10.96 10.86 0.14 0.12
3-stage 216-port 5.38 5.14 0.08 0.02
3-stage 432-port 11.04 11.72 0.18 0.16
3-stage 648-port 16.5 19.38 0.38 0.36
3-stage 3456-port 105.86 286.38 11.66 10.58
4-stage 4608-port 401.1 1671.54 59.96 81.04

we directly compare classic fat-tree routing and mFtree,
we will observe that mFtree delivers better performance in
each case. The differences are especially visible for 2-stage
fabrics: for the 648-port fabric, the performance delivered by
mFtree routing is 25.6% higher than for the classic fat-tree
routing and for the 384-port fabric, the performance is 52.6%
higher. For the 3-stage fabrics, the performance differences
are 2%, 7.1%, 8.2% for the 648-port, 432-port and 216-
port fabrics, respectively. Such performance differences are
explained by the fact that the doubling recursive pattern is
constructed in such a way that end-port:A at every end-
node only sends to end-ports:A on other nodes. Furthermore,
both Node1 : portA when sending to Node2 : portA
(due to regularity of the classic fat-tree routing) uses second
left-most spine as does Node1 : portB when sending to
Node2 : portB. For mFtree routing, the spines chosen
will be always different. This is especially important in the
oversubscribed fabric where the congestion not only occurs
on the upward links, but also on some of the downward
links.

C. Execution time

Another important metric of a routing algorithm is its
execution time, which is directly related to the reconfigu-
ration time of the fabric in case of topology changes. For
comparison, we added two more routing algorithms: minhop
and deadlock-free single-source shortest-path routing (DF-
SSSP), and added two large topologies to observe how does
the execution time scale with regard to the node number: a
3-stage 3456-port fat-tree and a 4-stage dual-core 4608-port
fat-tree. The results are presented in Table I. As we may
observe, the fat-tree routing and mFtree routing are compa-
rable when it comes to the execution time. For a smaller
number of ports (up to 4608), mFtree is in fact slightly
faster than classic fat-tree. This happens because the ratio
of ports to switches is low (i.e. there are many more ports
than switches). However, the problem encountered when
routing a 4608-port topology is that it contains 1440 24-
port switches. What is not optimized is clearing the switch
redundancy flag in function clear redundant flag() from
Algorithm 3. The loop in that function iterates over all the
switches regardless whether a particular switch was on the
path or not. This could be optimized by creating a list of



switches that are on the path and making sure only those
switches are iterated upon.

When it comes to other routing algorithms, we observe
that they have extremely long execution times for fat-tree
topologies. This is especially true to DFSSSP whose execu-
tion time explodes 1671.5 seconds, which means almost 28
minutes of downtime in case of a failure.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the new mFtree routing
algorithm. We showed that it improves the network per-
formance compared to the current OpenSM fat-tree routing
by up to 52.6%. Most importantly, however, mFtree routing
algorithm gives much better redundancy than classic fat-tree
routing, which means that multi-homed nodes will suffer no
downtime in case of switch failures.

In future we plan to optimize the routing algorithm, so
its execution time is shorter on larger fabrics. Furthermore,
we will be working with other enhancements to the fat-tree
routing.

REFERENCES
[1] J. Dongarra, “Visit to the National University for Defense

Technology Changsha, China,” Report, June 2013,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/
tianhe-2-dongarra-report.pdf.

[2] “Top 500 supercomputer sites,” http://top500.org/, June 2013.
[3] “The OpenFabrics Alliance,” http://openfabrics.org/.
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