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Abstract—In lossless interconnection networks such as Infini-
Band, congestion control (CC) can be an effective mechanism
to achieve high performance and good utilization of network
resources. The InfiniBand standard describes CC functionality
for detecting and resolving congestion, but the design decisions
on how to implement this functionallity is left to the hardware
designer. One must be cautious when making these design
decisions not to introduce fairness problems, as our study
shows.

In this paper we study the relationship between congestion
control, switch arbitration, and fairness. Specifically, we look
at fairness among different traffic flows arriving at a hot spot
switch on different input ports, as CC is turned on. In addition
we study the fairness among traffic flows at a switch where
some flows are exclusive users of their input ports while other
flows are sharing an input port (the parking lot problem).

Our results show that the implementation of congestion
control in a switch is vulnerable to unfairness if care is not
taken. In detail, we found that a threshold hysteresis of more
than one MTU is needed to resolve arbitration unfairness.
Furthermore, to fully solve the parking lot problem, proper
configuration of the CC parameters are required.

I. INTRODUCTION

Traffic congestion in interconnection networks may de-
grade the network and the compute system performance
severely if no countermeasures are taken[1], [2], [3]. Con-
gestion is simply a result of high load of traffic fed into a
network link, exceeding the link capacity at that point. Hot
spot traffic patterns, network burstiness, re-routing around
faulty regions, and conducting link frequency/voltage scaling
(lowering the link speed in order to save power), can all lead
to congestion. If all these factors are known in advance, the
network administrator may alleviate the consequences by
effective load balancing of the traffic, but typically this is
not the case. Furthermore, in cases where multiple nodes
send more data to a single destination than the node can
handle, no dynamic re-routing can be done to avoid network
congestion. It becomes even more severe when a parallel
computer is running multiple different jobs as an on-demand
service (e.g. cloud computing), where the resulting traffic
pattern becomes totally unpredictable.

Congestion control (CC) as a countermeasure for relieving
the consequences of congestion has been widely studied in
the literature. In particular, this problem is well understood
and solved by dropping network packets in traditional lossy
networks such as local area networks (LANs) and wide
area networks (WANs). In these environments packet loss

and increased latency are indications of network conges-
tion. Herein it is mainly TCP that implements end-to-end
congestion control, either by a traditional window control
mechanism [4] for detecting dropped packets or through
changes in latency [5], [6]. Very often those networks are
also over-provisioned in order to avoid congestion.

In high performance computing (HPC) data centers low
latency is crucial, and packet dropping and retransmission
are not allowed under regular circumstances, contrary to
LANs and WANs, due to the loss of performance that is
associated with packet drops. Lossless behavior is achieved
with credit based link-level flow control, which prevents a
node or a switch from transmitting packets if the downstream
node or switch lacks buffer space to receive them.

Typically, when congestion occurs in a switch, a conges-
tion tree starts to build up due to the backpressure effect of
the link-level flow control. The switch where the congestion
starts will be the root of a congestion tree that grows towards
the source nodes contributing to the congestion. This effect
is known as congestion spreading. The tree grows because
buffers fill up through the switches as the switches run
out of flow control credits (not necessarily in the root). As
the congestion tree grows, it introduces head-of-line (HOL)
blocking[7] and slows down packet forwarding that also
affects flows which are not contributing to the congestion,
severely degrading the entire network performance. The
HOL blocked flows become victims of congestion[7].

Congestion control for link-level flow controlled networks
cannot be based on a traditional window control mechanism
as deployed by TCP, though it effectively limits the amount
of buffer space that a flow can occupy in the network[8].
The reason for this is the relatively small bandwidth-delay
product in this environment, where even a small window
size may saturate the network [7]. A rate control based CC
mechanism is more appropriate for link-level flow controlled
networks, since it increases the range of control compared
to a window based system. The mechanism relies on the
switches to detect congestion, and inform the sources that
contribute to the congestion that they must reduce their
corresponding injection rates. There are basically two ways
to inform the source nodes in such an explicit congestion no-
tification scheme. Either the switches can mark the packets
contributing to congestion in order to notify the destinations
about the situation which subsequently notifies the sources
(the forward explicit notification approach), or the switches
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can themselves generate notification packets that are sent
directly to the source nodes (the backward explicit notifica-
tion approach). The InfiniBand (IB) [9] network applies the
former approach, while the emerging Data Center Bridging
standard [10] is implementing the latter.

There is a body of work that propose different strategies
for congestion notification and marking, e.g. a congested
packet can be marked both in the input and output buffer
as well as being tagged with information about the severity
of the congestion. Furthermore, there are several different
approaches to the design of the source response function, i.e.
the actions taken to reduce the injection rate, later followed
by an increase in the rate when congestion is resolved [8],
[11], [12], [13].

There are also congestion control mechanisms targeting
link-level flow controlled networks that take a completely
different approach. Instead of removing the congestion tree
itself, these approaches strive to relieve the unfortunate side
effects the congestion tree has on flows not contributing
to the congestion. That is, they try to remove the HOL
blocking by using special set aside queues for contributors
to congestion, effectively making it possible for victim flows
to bypass the contributors to congestion without actually
removing the congestion tree[14], [15]. Such an approach
has the advantage of being able to react immediately and
locally at each switch, at the cost of the extra buffers needed
for the set aside queues and the added complexity in the
switch to manage them. The real cause of the problem,
sources injecting too much traffic into the network, is
though left untouched. Furthermore, such a CC mechanism
is not directly applicable in InfiniBand, the interconnection
network technology we will use as a basis for our congestion
control and fairness studies in this paper.

InfiniBand was standardized in October 2000 and over the
years it has increased its marked share, when referring to the
Top500 list [16], to 42% of the HPC market. Furthermore, 4
out of 7 Petaflop systems in the world are using InfiniBand
as the system interconnect. Congestion control was added
in release 1.2 of the InfiniBand specification and is to some
extent based on the work done by Santos et. al. [8].

InfiniBand hardware with support for CC has been avail-
able since June 2008 [17], but the firmware required for
using CC has just been released. Recently Gran et. al.
presented the first experiences with CC in IB hardware,
where they showed that the IB CC mechanism effectively
resolves congestion and improves fairness by solving the
parking lot problem, if the CC parameters are appropriately
set[7]. Another significant contribution is the work done by
Pfister et. al. [18], where they studied (through simulations)
how well IB CC can solve certain hot spot traffic scenarios
in fat tree networks.

The IB standard provides some freedom in the imple-
mentation of its CC concept; several design decisions are
left to the implementer (as standards typically do). Care
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Figure 1. Congestion control in InfiniBand.

must be taken, however, regarding the implementation and
the use of both the threshold and the marking rate CC
parameters, in order to be able to resolve congestion and
achieve fairness. Fairness is an important property of any
interconnection network. Different traffic flows, having the
same priority, should all get equal access to shared resources
in the network. InfiniBand as well as other interconnection
networks uses a round robin arbitration scheme[19] for
selecting the next packet to be sent over a switch output
port.

In this paper we study the relation between CC, switch
arbitration, and fairness. Specifically, we look at fairness at a
switch in two types of situations: I) Fairness among different
traffic flows arriving at a hot spot switch on different input
ports (solving the congestion problem without introducing
unfairness), and II) Fairness among traffic flows where some
flows are exclusive users of their input ports while other
flows are sharing an input port (essentially solving the
parking lot problem[20]).

We outline the parameter use and implementation of IB
CC around a simulation model. In addition we present results
from experiments with hardware to confirm that there is a
good correlation between our simulator and the hardware
behavior.

The reminder of the paper is organized as follows: Section
II gives an overview of the CC mechanism supported by IB.
In section III we describe our simulation model, before we in
section IV and V study fairness of a IB CC capable switch
in the two types of situations explained above. In section
VI we show the correlation between our simulator and the
hardware, before we conclude in section VII.

II. CONGESTION CONTROL IN INFINIBAND

The IB CC mechanism, specified in the InfiniBand Archi-
tecture Specification release 1.2.1[9], is based on a closed
loop feedback control systems where a switch detecting
congestion marks packets contributing to the congestion by
setting a specific bit in the packet headers, the Forward
Explicit Congestion Notification (FECN) bit (fig. 1 (1)). The
congestion notification is carried through to the destination
by this bit. The destination registers the FECN bit, and
returns a packet with the Backward Explicit Congestion
Notification (BECN) bit set to the source (fig. 1 (2)). The
source then temporarily reduces the injection rate to resolve
congestion (fig. 1 (3)).
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The exact behaviour of the IB CC mechanism depends
upon the values of a set of CC parameters governed by a
Congestion Control Manager. These parameters determine
characteristics like when switches detect congestion, at what
rate the switches will notify destination nodes using the
FECN bit, and how much and for how long a source
node contributing to congestion will reduce its injection
rate. Appropriately set, these parameters should enable the
network to resolve congestion, avoiding HOL blocking,
while still utilizing the network resources efficiently.

1) Switch Features: The switches are responsible for
detecting congestion and notifying the destination nodes
using the FECN bit. A switch detects congestion on a given
port and a given Virtual Lane (Port VL) depending on a
threshold parameter. If the threshold is crossed, a port may
enter the Port VL congestion state, which again may lead to
FECN marking of packets.

The threshold, represented by a weight ranging from 0
to 15 in value, is the same for all VLs on a given port, but
could be set to a different level for each port. A weight of 0
indicates that no packets should be marked, while the values
1 through 15 represent a uniformly decreasing value of the
threshold. That is, a value of 1 indicates a high threshold
with high possibility of congestion spreading, caused by
Port VLs moving into the congestion state too late. A value
of 15 on the other hand indicates a low threshold with
a corresponding low possibility of congestion spreading,
but at the cost of a higher probability for a Port VL to
move into the congestion state even when the switch is not
really congested. The exact implementation of the threshold
depends on the switch architecture and is left to the designer
of the switch. We will in section IV see that precaution needs
to be taken not to violate the fairness of the switch when
implementing the threshold.

A Port VL may enter the congestion state if the threshold
is crossed and it is the root of congestion, i.e. the Port
VL has available credits to output data. If the Port VL
has no available credits, it is considered to be a victim of
congestion and shall not enter the congestion state1. When
a Port VL is in the congestion state its packets are eligible
for FECN marking. A packet will then get the FECN bit
set depending on two CC parameters at the switch, the
Packet Size and the Marking Rate. Packets with a size
smaller than the Packet Size will not get the FECN bit
set. The Marking Rate sets the mean number of eligible
packets sent between packets actually being marked. With
both the Packet Size and the Marking Rate set to 0, all
packets should get the FECN bit set while a Port VL is in
the congestion state.

1If the V ictim Mask is set for the port, then the switch will move the
Port VL into the congestion state independently of the number of available
credits. The V ictim Mask is typically set for switch ports connection
HCAs to the switch as an HCA will never detect congestion itself.

2) Channel Adapter Features: When a destination CA
receives a packet with a FECN bit, the CA should as
quickly as possible notify the source of the packet about
the congestion. This is done by returning a packet with the
BECN bit set back to the source. The packet with the BECN
bit could either be an acknowledgement packet (ACK) for
a reliable connection or an explicit congestion notification
packet (CNP). In either case it is important that the ACK or
the CNP is sent to the source as soon as possible to ensure
a fast response to the congestion.

When a source CA receives a packet with the BECN bit
set, the CA lowers the injection rate of the corresponding
traffic flow. To determine how much and for how long the
injection rate should be reduced, the CA uses a Congestion
Control Table (CCT ) and a set of CC parameters. The
CCT holds injection rate delay (IRD) values that define
the delay between consecutive packets sent by a particular
flow (the IRD calculation being relative to the packet length).
Each flow with CC activated holds an index into the CCT,
the CCTI . When a new BECN arrives, the CCTI of the
flow is increased by CCTI Increase. The CCT is usually
populated in such a way that a larger index yields a larger
IRD. Then consecutive BECNs increase the IRD which
again decreases the injection rate. The upper bound of the
CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a
CCTI T imer, maintained separately for each SL of a port.
Each time the timer expires, the CCTI is decremented by
one for all associated flows. When the CCTI of a flow
reaches zero, the flow no longer experience any IRD.

The IB CC can operate either at the Service Level (SL)
or at the Queue Pair (QP) level at an HCA. Any lowering of
the injection rate as a result of BECN reception, then affects
the whole SL or the single QP depending on the level of
CC operation. While operating at the SL level may require
less resources at the HCA than operating at the QP level,
choosing the SL level will have a negative impact on both
fairness and performance. The reason is that a single traffic
flow contributing to congestion will lower the injection rate
of all traffic flows within the same SL at the HCA. This
could include traffic flows not contributing to the congestion
at all as they are not going through the root of the congestion
tree, but headed for other parts of the network. This type of
unfairness is avoided if the CC operates at the QP level.
We will not consider this type of unfairness any further in
this paper, as we focus on the fairness provided by switches
running CC.

III. THE SIMULATION MODEL

Our network simulator and switch model is built on
the OMNet++ platform[21]. It is based on the IB model
made available to the OMNeT++ community by Mellanox
Technologies Ltd in 2007/2008. We have ported this model
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to the OMNeT++ 4 environment, made several bug fixes, im-
plemented CC support, and added some general extensions
to it to make it more suitable for our studies.

Below we give a brief overview of the features and
the detail level of our simulation model. A more detailed
description of the simulator is given in [22].

A. The IB Model

The IB model consists of a set of modules to simulate
an IB network with support for the IB flow control scheme,
arbitration over multiple virtual lanes, congestion control,
and routing using linear forwarding tables.

The two building blocks for creating networks using the
IB model are the Host Channel Adapter (HCA) module and
the Switch module. During a simulation an HCA represents
both a traffic generator, traffic injector and a traffic sink
in the network, while a Switch acts as a forwarding node.
The HCA supports several traffic generation schemes, e.g.
varying the injection rate, the packet size and the destination
node distribution. The Switch is modelled as an input buffer
architecture with support for virtual lanes, virtual output
queuing (VoQ) and virtual cut through switching. It uses
round robin arbitration over the different VLs and multiple
input ports.

The InfiniBand Congestion Control mechanism is imple-
mented by the Congestion Control ManaGeR (CCMGR)
module. The CCMGR is part of the HCA and the Switch,
and manages everything related to congestion control in
these modules in compliance with IB CC as described in
the previous section.

IV. FAIRNESS - TYPE I

In the type I situation we look at the fairness among
traffic flows arriving at a switch on different input ports,
creating congestion as they are headed for the same output
port. In an IB CC capable network, the switch will detect
congestion as soon as the CC threshold is crossed, and
mark the contributing packets to tell the sources about the
contention at the switch.

Round robin (RR)[23], [19] is thought to be a fair
arbitration scheme for the type I situation. All input ports at
a switch are served in a round robin fashion. An input port
currently accessing an output port, will not get access to the
same output port again until all other input ports requesting
the same output port has been granted access. We will use an
example to illustrate the fairness of the RR scheme. Figure 2
shows a switch connecting seven end nodes, where all links
have the same bandwidth. Now, let us add traffic flows to the
network as indicated by the arrows in the figure, and study
the throughput of the different flows. The flows are added
one by one, with one second intervals, until all five flows are
active. The startup sequence follows the numeric ordering,
starting with H1. Notice that one flow, the one from H1, is
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Figure 2. Topology and traffic flows.
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Figure 3. Throughput - No congestion control.

headed for the node H4, while the four other flows are all
headed for the same destination, H5.

Figure 3 shows the throughput of the five traffic flows
during a simulation. The flow from H1 to H4 achieves a
steady throughput of 13Gbps during the whole simulation.
This is as expected as this traffic flow, being the only one
headed for H4, is independent of all the other traffic flows.
The throughput of this flow will serve as a reference as we
now add the four flows headed for H5. After one second we
add the first one, that is, the one originating from H2. This
flow also maintains a 13Gpbs throughput for one second.
Then, at 2s, we add the second traffic flow towards H5.
Now the two flows headed for H5 each experience a drop in
performance down to half the capacity of the bottleneck link,
the link from the switch to H5. Each flow is given the same
access to this link, that is, the arbitration scheme is fair. As
we add the third and fourth flow headed for H5, we see a
corresponding drop in performance for each new additional
flow. However, the available bandwidth at the bottleneck link
is evenly shared among the flows, that is, the RR scheme is
fair.
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Figure 4. Throughput - Congestion control enabled.

A. Congestion Control Using One Threshold

Now, let see what happens to fairness when we enable
congestion control (CC) (this small topology could be part of
a greater network where it has been found reasonable to use
CC). Figure 4 shows the throughput of the five traffic flows
running the same simulation as before, but this time with CC
turned on. As we can see, even if the RR arbitration scheme
is fair, the CC has a negative impact on the fairness. When
we at 2s add the flow from H3, this flow is able to stabilize
at a throughput of a little more than 7Gbps. This is about
1Gbps higher than the other flow going to H5, the flow from
H2. Then, when we add H6 at 3s we see that the unfairness
is even more dramatic. This time the amount of traffic the
flow from H6 is able to get through the bottleneck link is
twice as much as what the flow H3 is able to get through.
The flow H2 settles in between at a little less than 5Gpbs.
Enabling CC has introduced unfairness in the network, even
if the arbitration scheme in the switch itself is fair. When
we add the last flow, H7, at 4s the situation continues; the
unfairness is still present.

The reason for the observed unfairness in figure 4 has
been identified to be the use of a single threshold to detect
congestion in the switch. Let us have a closer look at what is
happening inside the switch as different traffic flows headed
for H5 are active. First, at any time when only one of
the flows is active, no matter how much traffic is sent,
the buffers will not fill and no congestion control marking
occurs (assuming that all links have the same capacity, and
that the end node H5 is able to remove the traffic from the
network as soon as it arrives). When a second flows is active,
however, the one flow with the highest injection rate will fill

its virtual output queue (VoQ) buffer first2. This situation is
shown in figure 5a. The figure shows two different input
ports of a switch, and the virtual output queues of these
two ports, VoQf1 and VoQf2, corresponding to the shown
output port (the one connecting H5 to the switch in our
scenario). The threshold is shown as a vertical dotted line.
Here f1 is the flow with the highest injection rate, and hence
the flow filling its VoQ the fastest. Naturally, the fill ratio of
VoQf1 crosses the threshold at a time where the other flow is
given access to the output port. The crossing of the threshold
moves the output port into the congested state, and by that,
packets being forwarded on this output port will be marked
as contributing to congestion. While in this state, the RR
arbitration in the switch will alternate between giving the
two flows access to the output port, resulting in each flow
experiencing approximately the same amount of congestion
control marking. The two flows will lower their injection
rates correspondingly. As the flow f1 initially was the most
aggressive flow, and both flows receives approximately the
same amount of congestion control feedback, the flow f2 is
actually likely to empty VoQf2 before the fill ratio of VoQf1

is below the threshold. When this happens, f1 is given sole
access to the output port. Now having an injection rate lower
than the maximum capacity of the link, the VoQf1 will be
emptied below the single threshold and the output port will
be moved out of the congestion state, as figure 5b shows.

All in all, the situation is somewhat controlled by the
most aggressive flow, f1. Exactly how many packets that
will be marked as contributing to congestion from each
of the two flows f1 and f2, depends on the traffic flow
characteristics, packet and buffer sizes, and the threshold
chosen. Our simulation studies show, however, that in the
common situation the different flows receive approximately
the same amount of congestion control information. Keeping
this in mind, also notice that two different traffic flows
governed by congestion control might very well stabilize
at different injection rate levels, even if they receive the
same amount of congestion control information. This could
happen if one of the flows, when congestion occurs, is
initially sending at a higher injection rate than the other
one. Then, as both flows are throttled by the same amount
of congestion control information, the net result is that the
two flows are stabilizing at different injection rates after the
throttling as well.

Now, look at figure 4 again. Each time we add a new flow
contributing to congestion, the new flow starts out with a
higher injection rate than the already contributing flows. This
is exactly the situation explained in the previous section, and
the result is quite visible in the figure: the flow given the
largest share of the bottleneck link is always the last flow
added - a flow that started its injection at full bandwidth.

2In general, different end nodes may very well inject traffic into the
network at different injection rates.
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(a) Output port moved into congested state. (b) Output port released from congested state.

Figure 5. Congestion control using a single threshold.

(a) Output port moved into congested state. (b) Output port released from congested state.

Figure 6. Congestion control using two thresholds.

More generally, an aggressive flow always being the last
one to empty its VoQ below the threshold, could benefit from
this behavior by constantly getting more than its fair share of
access to the bottleneck link. This is the behavior observed
in figure 4. One way to avoid this unfortunate situation is
to introduce a second threshold.

B. Congestion Control Using Two Thresholds

Let us now study the situation in figure 2 again, this
time with two thresholds per VoQ. Introducing a second
threshold, each VoQ now has a lower and upper threshold,
as shown in figure 6. When the fill ratio climbs above the
high threshold the corresponding output port is moved into
the congested state, as shown in figure 6a. The output port
is then not released from this state until the fill ratio is
lower than the low threshold, figure 6b. By using these two
thresholds we ensure that congestion control information
continue to be sent for an extended period of time, even
after the fill ratio is below the upper threshold. It is no longer
possible for a flow to first trigger congestion marking, and
then immediately release congestion again as soon as it itself
is being granted access to the output port. In particular, an
aggressive flow will experience congestion control marking
for an extended period of time, even when it has sole access
to the output port.

Figure 7 shows the same simulation as before, this time
using two thresholds instead of one. As we can see from the
figure, fairness is now restored. Each time a new contributor
to congestion is added, all contributors quickly settle for
their fair share of the congested link, even if the newly
added contributor initially was injecting traffic at a much
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Figure 7. Throughput - Congestion control using two thresholds.

higher rate than the others. The use of two thresholds ensures
that any aggressive flow triggering congestion at a VoQ in
a switch, will receive a correspondingly high amount of
congestion control information, that is, BECNs.

Simulations have shown that an hysteresis of more than
one MTU (maximum transmission unit) is needed to resolve
unfairness. The distance between the upper and lower thresh-
old used during the simulations shown in figure 7 was a little
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Figure 8. Topology and traffic flows (II).

more than 3 MTUs.

C. A common set of thresholds

For simplicity, each VoQ in figure 6 is shown to have
its own set of thresholds. Then CC is triggered as soon
as the threshold is crossed in at least one of the VoQs.
Another approach is to use a common threshold for all VoQs
related to a given output port. Then this common threshold
is compared against the sum of the buffer occupancy of all
corresponding VoQs. Using a common threshold, there is
no differentiation between a single flow occupying a large
part of its VoQ, and by that solely triggering congestion
marking, and several flows filling smaller parts of their
VoQ, but together occupying enough buffer space to trigger
congestion marking. Our simulations shows that the behavior
of the two approaches are quite similar. What matters is
that the threshold parameter is mapped to a fill ratio of the
VoQ(s) that ensures fast and proper congestion detection.
Special care must be taken when implementing the common
threshold approach, to make sure that the threshold maps to
a low enough fill ratio to allow for one single VoQ to trigger
congestion by its own. This is important as a single flow or
VoQ could create congestion alone in certain situations. E.g.
a source node injecting traffic into the network faster than
the destination node can handle, could singlehandedly create
a congestion tree with the root of the tree at the last switch
prior to the destination. A single VoQ could also very easily
create congestion alone in a network where different links
have different bandwidths. We will see an example of this
in the next section.

V. FAIRNESS - TYPE II

Let us turn our attention towards the type II situation.
In this scenario some traffic flows are sharing an input port,
while other flows are the exclusive users of their input ports.
By extending our topology from figure 2 with a second
switch, we can exemplify such a situation by adding the
traffic flows shown in figure 8. Notice that the switch to
switch link has twice the capacity of the other links. Now,
at the switch S2, the two flows from H2 and H3 headed for
H5 are sharing an input port and the VoQ corresponding to
the link towards H5, while the two traffic flows from H6
and H7 are exclusive users of their input ports. The Round
Robin arbitration scheme provides each input port with the
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Figure 9. Throughput - No congestion control (II).

same fraction of the output bandwidth, resulting in an unfair
arbitration for the flows heading to H5. The two flows from
H2 and H3 will by S2 be seen as one flow since they
share the same VoQ. Then, implementing RR arbitration,
the switch S2 will grant access to the link towards H5 as
if there were only three traffic flows requesting access to it
instead of four. The result is that the flows from H6 and H7
each get 1/3 of the total bandwidth of the link between S2
and H5, while the last 1/3 is shared by the two flows from
H2 and H3 giving them 1/6 of the bandwidth each. This
unfairness, due to the sharing of input ports and buffers by
some flows at an RR based switch, is often referred to as
the parking lot problem[24], [20].

Figure 9 shows the throughput achieved by the different
traffic flows when simulating the situation of figure 8. As
before, a new traffic flow is added to the network each
second, starting with the flow from H1. The unfairness
caused by the parking lot problem is clearly visible as
soon as we add the flows from H6 and H7 at 3s and 4s
respectively. During the time period from 3s to 4s, H6
achieves the same throughout as H2 and H3 combined.
When H7 is added at the time 4s, both H6 and H7
achieves twice the throughput of H2 and H3. The parking
lot problem is evident. Notice also that HOL blocking is
present. As soon as we add the flow from H3, a congestion
tree builds from S2 through S1 towards the sources, and
the flow from H1 is not able to progress any faster than the
contributors to congestion H2 and H3[7].

Most interconnection networks like InfiniBand are using
Round Robin arbitration between inputs of the switch. The
worst possible unfairness happens when all nodes send
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Figure 10. An example 4-ary 3-tree.

data to a single node. Formally, assuming traffic is flowing
through M out of the N − 1 input ports towards an output
port, the RR arbitration will provide 1/M of the output
bandwidth to each input. In the single switch scenario with
a network diameter of two, this is fair. In a larger network,
however, the Msi flows from a switch Si sharing the output
port towards the switch Sj , will at Sj together only be
assigned 1/Msj

of the capacity of the next output port (given
that they are all headed for the same output port at Sj as
well). That is, in the worst case scenario the unfairness
increases by Msx

for each additional switch on the path
from the source towards the destination. For large MIN
networks where M approaches N − 1, the worst possible
unfairness in bandwidth allocation is: (N − 1)D−2 where
D is the network diameter. For network topologies like k-
ary n-trees[25], the exact ratio depends on the routing used.
For D-Mod-K routing [26], [27], each down link in the
network carries traffic to a single destination. In the example
4-ary 3-tree provided in figure 10, there are 3 first level
neighbors to the destination, 42 − 4 = 12 second level
neighbors and 43 − 42 = 48 third level neighbors. With
RR arbitration, the bandwidth fraction provided is 1/4 and
1/4/4/4 = 1/64 for the first and second level neighbors,
respectively. For the third level neighbors, as they all go
through the same spine port, the bandwidth fraction for each
source is 1/4/4/48 = 1/768. More formally, for a k-ary
n-tree the furthest sources will in the worst case scenario
receive only 1/kn−1/(kn − kn−1) = 1/(k2n−1 − k2n−2)
of the bandwidth of the last link to the destination, while
a first level neighbor will receive 1/k. It is imminent that
with high radix switches the unfairness is so high that it
may actually cause transport timeouts in cases of many to
one communication. Similarly, timeouts could happen due
to unfairness in a network even with low radix switches if
the diameter is high.

Some alternatives to RR arbitration, that could solve the
demonstrated unfairness, rely on the number of different
flows through an input port as a weight for the arbitration.
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Figure 11. Throughput - Congestion control turned on (II).

The incurred cost of such a solution presented by [28]
makes it impractical for Interconnection Networks - where
the number of different flows is O(N2).

The topology in figure 8 is suitable for studying the
characteristics of CC in a controlled manner. At the same
time, recognize that this topology could be part of a larger
topology similar to the 4-ary 3-tree in figure 10. If we now
rerun our simulation of the scenario shown in figure 8 with
CC enabled, we get the results shown in figure 11. The four
traffic flows contributing to congestion are now equalized.
The HOL blocking is gone and the parking lot problem has
been resolved. Recall from section IV that any aggressive
flow will experience more congestion marking than less
aggressive flows, given that the CC mechanism is properly
implemented using hysteresis, that is, two thresholds. Then,
with the introduction of CC, using a marking rate of 13,
the close neighbors are punished as they are able to pass
more traffic through the congested port. The result is that,
on average, all flows will be throttled to provide the same
bandwidth, as can be seen from figure 11.

While the introduction of IB CC has the potential of
solving the parking lot problem, the degree of success in
solving this problem is not only related to the hardware
implementation of the IB CC, but also the values chosen for
the IB CC parameters. E.g. choosing an unfortunate marking
rate or CCTI T imer could result in the contributors to
congestion being slow in settling for their fair share of the
bottleneck link. An example is given in figure 12. Here

3The marking rate rule applied marks every packet going through a
congested link with probability P (1/(marking rate+1)). This adheres
to the IB CC specification.
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Figure 12. Throughput - marking rate 10.

the marking rate is set to 10, while the CCTI T imer
is set 10 times as high as before to compensate for the
new marking rate. While the parking lot problem is still
to some degree solved, an unfairness is present in the
network for an extended period of time each time a new
contributor is added. How to set the IB CC parameters,
possibly independent of topology and traffic patterns, is a
subject of ongoing research. Both simulation studies and
hardware experiments[7] indicate, however, that the marking
rate should be kept low, preferable at 1, to ensure high
utilization of network resources and fairness.

VI. A COMPARISON WITH HARDWARE EXPERIMENTS

In the studies we have presented in this paper we have
been using a simulation model to examine the relation
between CC, arbitration and fairness. The use of a simulation
model was necessary because no hardware that we know of
gives us the same flexibility as simulations when it comes to
changing the internal behavior of the switch, as done in our
study. When using simulations, however, it is important to
validate, to the extent possible, the correctness of the model
with its real world equvivalent. We have done a general
validation of our simulation model against real hardware
as documented in[22]. Furthermore, we have compared the
simulation results from the threshold implementation using
hysteresis (two common threshold values for all VoQs cor-
responding to a given output port), to hardware experiments
using IB CC capable hardware from Mellanox Technologies
and Sun Microsystems, now Oracle. A hardware test bed
corresponding to the topology showed in figure 8 was put
together using two Mellanox InfiniScale IV switches and
seven Mellanox ConnectX Host Channel Adapters equipped
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in seven Sun Fire X2200 M2 hosts. Figure 13 shows the
hardware experiment results corresponding to the simulation
results shown in figure 11. As the figures show there is
a strong correlation between our simulation results and
the hardware results, which confirms our confidence in the
simulation model.

VII. CONCLUSIONS

Switch arbitration and its relation to fair utilization of
link bandwidth has been studied for decades. Congestion
control in interconnection networks on the other hand is far
less understood. This is particularly true for its relation to
various fairness aspects.

Ideally, the local switch-fairness provided by well func-
tioning switch arbitration should work independently of the
more global stream fairness provided by end-to-end con-
gestion control. In this paper we have demonstrated and ex-
plained why this is not always the case. Through simulations
calibrated with hardware measurements, we have shown that
a straightforward implementation of IB congestion control
leads to unfairness even in a simple one switch scenario.
Furthermore this unfairness is unstable in the sense that the
distribution of bandwidth to the different flows depends on
the utilization of the different flows that just happened to
prevail at the instance of time when congestion occurred.

We have demonstrated that a good solution to the above
problem is to introduce two congestion control marking
thresholds. We have also shown that this technique solves
the parking lot problem[20] and is quite robust with regards
to parameter settings. The detailed relation between our re-
sults and CC-parameters settings is still under investigation.
Preliminary results indicate that our main results prevail,
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but that the marking rate influences the speed by which the
system converges to a stable state after a change of traffic
pattern. A full investigation of this is, however, left for future
work.
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