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Abstract—End-point hotspots can cause major slowdowns
in interconnection networks due to head-of-line blocking and
congestion. Therefore, avoiding congestion is important to
ensure high performance for the network traffic. It is especially
important in situations where permanent congestion, which re-
sults in permanent slowdown, can occur. Permanent congestion
occurs when traffic has been moved away from a failed link,
when multiple jobs run on the same system, and compete for
network resources, or when a system is not balanced for the
application that runs on it.

In this paper we suggest a mechanism for dynamic allocation
of virtual lanes and live optimization of the distribution of flows
between the allocated virtual lanes. The purpose is to alleviate
the negative effect of permanent congestion by separating
network flows into slow lane and fast lane traffic. Flows destined
for a end-point hot-spot is placed in the slow lane and all other
flows are placed in the fast lane. Consequently, the flows in the
fast lane are unaffected by the head-of-line blocking created
by the hot-spot traffic.

We demonstrate the feasibility of this approach using a
modified version of OFED and OpenSM with fat-tree routing
on a small InfiniBand cluster. Our experiments show an
increase in throughput ranging from 150% to 468% compared
to the conventional fat-tree algorithm in OFED.

I. INTRODUCTION

For fat-trees, as with most other topologies, the routing
algorithm is crucial for efficient use of the underlying topol-
ogy. The popularity of fat-trees in the last decade has led to
many efforts trying to improve the routing performance in
fat-trees. This includes the current approach that the Open-
Fabrics Enterprise Distribution [1], the de facto standard for
InfiniBand (IB) system software, is based on [2], [3]. These
proposals, however, have several limitations when it comes
to flexibility and scalability. One problem is the static routing
used by IB technology that limits the exploitation of the path
diversity in fat-trees as pointed out by Hoefler et al. in [4].
Another problem with the current routing is its shortcomings
when routing oversubscribed fat-trees as addressed by Ro-
driguez et al. in [5]. A third problem is that performance is
reduced when the number of compute nodes connected to the
tree is reduced as addressed by Bogdanski et al. in [6]. And
finally we have the problem of reducing the negative impact
of congestion due to head-of-line (HOL) blocking [7]. This
is not a routing problem per se as this should be handled by

a congestion control mechanism, e.g. the mechanism found
in IB [8], [9]. This mechanism, however, has its own set
of challenges; one being that it is not supported by all
IB hardware, another being that it is not yet understood
how to configure congestion control for large networks [10].
Therefore, it is important to minimize the problem by other
means. A recent proposal by Rodriguez et al. [11] addresses
the congestion issue from a routing perspective, but in an
application-specific manner and without using virtual lanes
(VLs). Another approach using a combination of multipath
routing and bandwidth estimation was proposed by Vishnu
et al. in [12], but this is significantly more complex to
implement than our proposal. A third proposal by Escudero-
Sahuquillo et al. [13] uses multiple queues at the input
ports in the switches to avoid HOL blocking, but this is
not compatible with any existing network technology and
requires new hardware to be built. In [14] we suggested the
vFtree algorithm that uses a combination of efficient routing
and virtual lanes to alleviate congestion. A problem with this
approach, however, is that it is based on a static distribution
of source-destination pairs across a set of VLs. The static
behaviour of the vFtree algorithm limits the performance
whenever there is a mismatch between the current hot-spot
and the precalculated distribution of source-destination pairs
across VLs.

To rectify this we now propose the dFtree algorithm
where the allocation of VLs is performed dynamically
during network operation using an optimisation feedback
cycle (Fig. 1). We introduce a performance manager [8]
that monitors the network using hardware port counters to
detect congestion and optimises the current VL allocation
by classifying flows as either slow lane (contributors to
congestion) or fast lane (victims of congestion). Then the
optimisation is applied using the host side dynamic reconfi-
gration method we proposed in [15]. The effect being that all
flows contributing to congestion are migrated to a separate
VL (slow lane) in order to avoid the negative impact of head-
of-line blocking on the flows not contributing to congestion
(victim flows). Compared to the vFtree approach we avoid
the bottleneck of static allocation of VLs and we reduce
the number of VLs required to two. Compared to normal IB
congestion control [10] we remove the need for source throt-



tling of the contributors. Furthermore, the current available
IB congestion control (CC) parameters cause oscillations
among all the flows because IB CC is dynamically adjusting
the injection rate of the senders. As a result, this solution
might not be suitable for congestion problem of a more
persistent nature because the oscillations that can reduce
the overall network throughput. In our previous work [15],
we are able to obtain a better overall network throughput
in certain congestion scenarios by avoiding the oscillations.
Such persistent congestion problems occur when traffic has
been moved away from a failed link, when multiple jobs run
on the same system, and compete for network resources,
or when a system is not balanced for the application that
runs on it. Our approach handles persistent congestion
problems by first detecting them, and thereafter dynamically
redistributing the VL resources so as to obtain a balance that
will be impossible to achieve statically at system start-up.

The rest of this paper is organized as follows: we in-
troduce the InfiniBand Architecture in Section II followed
by the dFtree design and implementation in Section III.
Then we describe the experimental setup in Section IV
followed by the performance analysis in Section V. Finally,
we conclude in Section VI.

II. THE INFINIBAND ARCHITECTURE

InfiniBand is a serial point-to-point full-duplex technol-
ogy, that was first standardized in October 2000 [8]. The
current trend is that IB is replacing proprietary or low-
performance solutions in the high performance computing
domain [16], where high bandwidth and low latency are the
key requirements.

The de facto system software for IB is Open Fabrics
Enterprise Distribution(OFED) developed by dedicated pro-
fessionals and maintained by the OpenFabrics Alliance [1].
OFED is open source and is available for both GNU/Linux
and Microsoft Windows. The dFtree algorithm that we
propose in this paper was implemented and evaluated in
a development version of OpenSM, which is the subnet
manager (SM) distributed together with OFED.

A. The Subnet Manager

InfiniBand networks are referred to as subnets, where
a subnet consists of a set of hosts interconnected using
switches and point-to-point links. An IB fabric is constituted
by one or more subnets, which can be interconnected to-
gether using routers. Hosts and switches within a subnet are
addressed using local identifiers (LIDs) and a single subnet
is limited to 48k LIDs.

An IB subnet requires at least one subnet manager (SM),
which is responsible for initializing and bringing up the net-
work, including the configuration of all the IB ports residing
on switches, routers and host channel adapters (HCAs) and
keeping the subnet operation in the subnet. A major part
of the SMs responsibility is routing table calculations and

deployment. Routing of the network aims at obtaining full
connectivity, deadlock freedom, and load balancing between
all source and destination pairs. Routing tables must be
calculated at network initialization time and this process
must be repeated whenever the topology changes in order to
update the routing tables and ensure optimal performance.

B. The Performance Manager

Performance management is one of the general man-
agement services provided by IB to retrieve performance
statistics and error information from IB components. Each
IB device is required to implement a performance man-
agement agent (PMA) and a minimum set of performance
monitoring and error monitoring registers. In addition, the
IB specification also defines a set of optional attributes
permitting the monitoring of vendor specific and additional
performance and error counters.

The task of the performance manager (PM) [8] is to
retrieve performance and error-related information from
these registers. The information is retrieved by issuing a
performance management datagram (MAD) to the PMA of
a given device. The PMA then executes the retrieval and
returns the result to the PM. As a result, the PM can use
this information to detect incipient failures and based on this
information, the PM can advise the SM about recommended
or required path changes and performance optimisations.

III. THE DFTREE DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of the dFtree algorithm. The algorithm is generic and can be
applied to any topology and routing algorithm, but in this
paper we focus on fat-trees because of the simplicity they
provide with respect to freedom from deadlock.

A. Overview

Performance tuning is the main activity associated with
performance management where tuning consists of finding
and eliminating bottlenecks. Hence, we are using the PM as
one of the key components to enable dynamic allocation
of virtual lanes to alleviate network congestion. Fig. 1
summarises the optimisation feedback cycle that consists
of the SM, the PM and our modified host stack with the
host side dynamic reconfiguration capability [15], [17]. In a
subnet, the SM periodically sweeps the subnet to discover
changes and maintain a fully connected subnet. Similarly, the
PM periodically collects information from every component
in the subnet in order to analyse the network performance.
After the analysis, the PM forwards the relevant information
to our modified host stack that reconfigures the virtual lanes
in order to improve network performance.

B. Design

Head-of-Line blocking during traffic peaks or ”hot-spot”
traffic patterns is one reason for performance degradation
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Figure 1. The performance optimisation feedback cycle.

in interconnection networks [7]. Common sources for hot-
spots include complex traffic patterns due to virtualisation,
migration of virtual machine images, checkpoint and restore
mechanisms for fault tolerance, and storage and I/O traffic.

One way to avoid this problem is to use a congestion
control (CC) mechanism such as the one recently specified
and implemented in IB. This mechanism was evaluated in
hardware and shown to be working by Gran et al. in [10],
however, IB CC is not always available, e.g due to a mixture
of old and new equipments in large clusters and this is often
the case that will exist for years.

In [14], we suggested an enhancement to the routing
algorithm in OpenSM [3] that utilises multiple virtual lanes
to improve performance during the existence of hot-spots.
The virtual lanes are assigned statically during the routing
table generation and can avoid the negative impact of the
victim flows. However, the assumption is that the topology
is a balanced, fully populated and fault-free fat-tree. In order
to overcome the shortcomings in our previous work [14],
we need a mechanism to identify the hot-spot flows and
assign the virtual lanes dynamically. Thus, we are using
two standard IB performance counters (Table I) as the
metrics to identify endpoint hot-spots and their contributors
dynamically during network operation. In addition, we have
derived three equations to calculate the normalised port
congestion and the port utilisation that are based on the
above mentioned performance counters.

Eq. 1 below defines the normalised port congestion as
the number of XmtWaits per second. An oversubscribed
endnode with a high Congestionport value is either a
contributor to the congestion or a victim flow. E.g the
contributors at endnode 1,2,4 and the victim at endnode 7 in
Fig. 2 have a high value for Congestionport. On the other
hand, an endnode that has a high Congestionport value for
its remote switch port indicates that it is an endpoint hot-
spot. E.g the switch port that is connected to node 6 in Fig. 2

Table I
NOTATION

Counters Meaning
XmitWait The number of ticks when the port is selected

had data to transmit but no data was sent
during the entire tick because of insufficient
credits or because of lack of arbitration.
A tick is the IBA hardware sampling clock
interval.

XmitData The total number of data in double words
transmitted on all VLs.

Interval The number of seconds between each performance
sweep.
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Figure 2. A simple congestion control experiment that illustrates how to
use xmtwait performance counter to identify an endpoint hot-spot and its
contributors.

has a high value for Congestionport.

Congestionport = △XmitWait/Interval (1)

Eq. 2 measures the sender port bandwidth for each port.
This formula is derived from the XmtData performance
counter that represents the number of bytes transmitted
between the performance sweeps. We multiply XmtData
by 4 in Eq. 2 because the XmtData counter is measured
in the unit of 32-bit words.

Bandwidthport = △XmitData ∗ 4/Interval (2)

Eq. 3 defines the port utilisation as the ratio between
the actual bandwidth, Bandwidthport and the maximum
supported link bandwidth.

Utilisationport = Bandwidthport/Max Bandwidthport

(3)

These three equations are used in Algo. 1 to identify hot-
spot flows as discussed in section III-C.



C. Implementation

The dFtree implementation consists of two algorithms.
Algo. 1 is used to identify the hot-spot flows, whereas
Algo. 2 is used to reassign a hot-spot flow to a virtual lane
classified as ’slow lane’.

Algo. 1 is executed after every iteration of the perfor-
mance sweep. The algorithm checks if the remote switch
port of an endnode has a Congestionport value exceeding
the threshold, if this is true the conclusion is that the
endnode is a hot-spot and the remote switch port is marked
as a hotspotport. After discovering an endpoint hot-spot,
Algo. 1 triggers the forwarding a repath to all potential
contributors. This trap encapsulates the LID, hotspotLID,
of the congested node.

The threshold value for Congestionport that is use to
determine congestion is 100000 XmtWait ticks per second.
The XmtWait counter is calculated on a per port basis, so the
threshold value to determine congestion is applicable even
if the network size increases.

In order to identify a potential contributor, we depend
on both Eq. 1 and 3. An endnode where Congestionport

exceeds the threshold indicates that it is either a hot-spot
contributor or a victim flow, whereas Utilisationport is used
to differentiate between a fair share link and a congested
link. E.g if node A and node B are sending simultaneously
toward node C. Even though both node A and B have
a Congestionport value that exceeds the threshold, they
receive a fair share of the link bandwidth toward node
C. Thus, our algorithm will only mark an endnode as a
potential contributor for hotspotLID and forward a repath
trap if the Congestionport value is above the threshold and
Utilisationport is less than 50%. In addition, if a new flow
is directed to an existing hotspotport, the new flow will still
be moved to the ’slow lane’. On the opposite, if an endnode
is no longer a hot-spot, all flows that are directed to that
endnode will be moved back to a virtual lane classified as
’fast lane’.

When a repath trap is received by a potential contributor,
Algo. 2 is executed. The host will retrieve all the active
QPs and compare them with the DLID in the repath trap.
If a matching DLID is found in one of the QPs, the QP
is reconfigured to use a ’slow lane’. Initially, all QPs are
initalised using a ’fast lane’.

D. Limitations

In general, running OpenSM with the PM enabled adds
an overhead because the PM periodically queries the perfor-
mance counters in each component within the subnet. These
queries, however, have minimal impact on data traffic as long
as OpenSM is running on a dedicated node.

Another concern is that the detection of the hot-spot flows
depends on the interval of the performance sweeps. If a hot-
spot appeared just after iteration n, the hot-spot detection

Algorithm 1 Detect endpoint hot-spot and its contributors
Ensure: Subnet is up and running and PM is constantly

sweeping
1: for swsrc = 0 to swmax do
2: for portsw = 0 to portmax do
3: if remote port(portsw) == HCA then
4: if congestionport > Threshold then
5: if portsw ̸= hot-spot then
6: Mark portsw as hotspotport
7: end if
8: Encapsulate hotspotLIDin a repath trap
9: Encapsulate slow lane as SLrepath trap

10: for hcasrc = 0 to hcamax do
11: if congestionport > Threshold then
12: if hca ̸= hotspotLID contributor then
13: if Utilisationport < 0.5 then
14: Mark hca as hotspotLID contribu-

tor
15: Forward repath trap to HCA
16: end if
17: end if
18: end if
19: end for
20: else if congestionport < Threshold then
21: if portsw == hot-spot then
22: Clear portsw as hotspotport
23: Encapsulate hotspotLID in a unpath trap
24: Encapsulate fast lane as SLrepath trap

25: for hcasrc = 0 to hcamax do
26: if hca is hotspotLID contributor then
27: Clear hca as hotspotLID

28: Forward unpath trap to HCA
29: end if
30: end for
31: end if
32: end if
33: end if
34: end for
35: end for

Algorithm 2 Reconfigure QP to slow/fast lane
Ensure: Host receives repath trap

1: for QPi = 0 to QPmax do
2: if DLIDQP == DLIDrepath trap then
3: Reconfigure SLQP according to SLrepath trap

4: end if
5: end for



and the ’slow lane’ assignment can only be performed at
iteration n+ 1, i.e. t seconds later.

IV. EXPERIMENT SETUP

To evaluate our proposal we have used both simulations
and measurements on a small IB cluster. In the following
subsections, we present the hardware and software configu-
ration used in our experiments.

A. Experimental Test Bed

Our test bed consists of twelve nodes and four switches.
Each node is a Sun Fire X2200 M2 server that has a dual
port Mellanox ConnectX DDR HCA with an 8x PCIe 1.1
interface, one dual core AMD Opteron 2210 CPU, and 2GB
of RAM. The switches are one 24-port Infiniscale-III DDR
switches and three 36-port Infiniscale-IV QDR switches
which we used to construct the topologies illustrated in
Fig. 3. All the hosts have CentOS 5.3 installed with a
customised IB host stack and the subnet is managed by a
modified version of OpenSM 3.3.5 that includes the PM.
The Perftest [18] tool was also modified to support regular
bandwidth reporting and continuous sending of traffic at full
link capacity. The modified Perftest is used to generate the
hot-spots shown in Fig. 3a and Fig. 3b.

B. Simulation Test Bed

To perform large-scale evaluations and verify the scala-
bility of our proposal, we developed an InfiniBand model
for the OMNeT++ simulator [19]. The simulations were
performed on a 648-port fat-tree topology as shown in Fig. 4
with a nonuniform traffic pattern, where 5% of all packets
generated by a compute node was sent to a predefined hot-
spot and the rest of the traffic was sent to a randomly chosen
node. Additionally, we used multiple localised hot-spots by
partitioning the 648-port switched network into one, three
or nine segments as described in section V-D.

V. PERFORMANCE EVALUATION

Our performance evaluation consists of measurements
on an experimental cluster and simulations of large-scale
topologies. For the cluster measurements we use the per flow
throughput and the worst case throughput during congestion
as the main metrics to compare the performance between
the dFtree algorithm and the existing fat-tree algorithm.
Additionally, we use the results from the HPCC benchmark
to show how the algorithm impacts application traffic. For
the simulations we use the achieved average throughput per
end node as the metric for measuring the performance of
the dFtree algorithm on the simulated 648-port topology.

Root
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(a) A hot-spot scenario in a simple fat-tree topology.
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(b) A hot-spot scenario in an over-subscribed fat-tree topology. In order to
illustrate that network bandwidth is not a problem, link 1-6 are QDR links
whereas the links between the leaf switches and the end nodes are DDR links.

Figure 3. Experiment scenarios for the hardware testbed. The solid lines
represent the hot-spot flows and the dotted lines represent the victim flows.
The numbers stated in the leaf switch A,B,C and root switch represent the
routing table.

A. Synthetic Traffic Patterns - Non-oversubscribed fat-tree

We carried out two different experiments on a non-
oversubscribed fat-tree as shown in Fig. 3a. For both ex-
periments, a collection of synthetic traffic flows ({1-5, 3-5,
6-5}) is used to generate a hot-spot as shown in Fig. 3a.
Node 5 is the hot-spot, nodes 1, 3 and 6 are the contributors
to the hot-spot.

1) Experiment I: In this experiment, the victim flow (2-
3) is started first and then the contributors ({1-5, 3-5, 6-5})
are added after 13s. This experiment illustrates the negative
impact of HOL blocking on the victim flow. It also shows
how our dFtree algorithm avoids it.

Fig. 5 shows the per flow throughput with and without
the dFtree algorithm. In Fig. 5a, the victim (2-3) is running
at 12.9 Gbps before the congested flows are introduced.
Starting from 13s, the congestion towards node 5 blocks
the traffic on link 1 and 3. Consequently, the bandwidth
of flow 2-3 is reduced to 3 Gbps, the same bandwidth
that the congested flow 1-5 achieved across link 1 due to



Figure 4. A 648-port switch fat-tree topology.

the HOL blocking. Fig. 5b shows the per flow throughput
with the dFtree algorithm. Now, the victim flow achieves
a throughput of 7.5 Gbps and it is not affected by the
congestion. We have also summarised the worst case per
flow throughput with and without the dFtree algorithm
during the congestion in Fig. 6. With dFtree, the victim flow
has improved approximately 150% from 3 Gbps to 7.5 Gbps
without impacting the contributors.

The reason that the dFtree algorithm can avoid HOL
blocking is that the PM detects that node 5 is the hot-
spot when the congested flows are introduced. After the
analysis, a repath trap that encapsulates node 5 as a hot-
spot LID is forwarded to the source node of the contributors
and the victim flows. When a sender (hot-spot contributor
or a victim flow) receives the repath trap, it retrieves all the
active QPs and compares the destination LID with the repath
trap LID. If a QP has a matching destination LID it will be
reconfigured to the ’slow lane’. As you can see from Fig. 5b,
there is a slight glitch for flow 1-5, 3-5 and 6-5 between
14s and 16s because the QPs are reconfiguring to the ’slow
lane’. After the reconfiguration, the victim flow regains its
throughput to 7.5 Gbps because the dFtree algorithm placed
the congested flows in a separated VL (’slow lane’) that
resolves the HOL blocking.

Another observation is that flow 6-5 has a higher share of
the bandwidth at 6.8 Gbps toward the hot-spot than flow 1-5
and 3-5 because of the parking lot problem [20]. In order
to resolve the parking lot problem, we would need to use
additional VLs.

2) Experiment II: In this experiment, the victim flow is
now flow 2-4. It has to share the upstream link with flow
1-5, one of the contributors, if a fault happens on link 1 or
2. Thus, in this experiment all flows are started at the same
time, but after 13s we disconnect link 2 to emulate a link
failure.

Fig. 7 shows the per flow throughput with and without
the dFtree algorithm in a faulty link scenario. Fig 7a shows
that the victim flow 2-4 achieves its maximum bandwidth
at 12.9 Gbps in the presence of congested flows (before
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Figure 5. Experiment I using scenario in Fig. 3a.
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13s). The victim (flow 2-4) is not impacted by the congested
flows because it uses link 2 whereas flow 1-5, one of the
contributors, uses link 1 as the upstream link. After 13s, a
fault happens at link 2 that triggers the SM to generate a new
set of routing tables that causes both flow 1-5 and flow 2-4
to share the same upstream link. Consequently, without the
dFtree algorithm the throughput of flow 2-4 drops to 3 Gbps
due to the HOL blocking caused by the congested flow 1-5.
On the other hand, with the dFtree algorithm as shown in
Fig. 7b, flow 2-4 instantly regains its link bandwidth at 7.5
Gbps after the link failure because the congested flows were
separated from the normal traffic flow and placed into the
’slow lane’ before the fault happened. The dip that causes
the throughput drop at 13s is due to OpenSM rerouting the
network after the fault happened. Furthermore, there is also
a glitch in each of the congested flows (flow 1-5, 3-5 and
6-5) in between 3-5s because the host is reconfiguring the
hot-spot contributors QP to the ’slow lane’.

In summary, Fig. 8 shows that the dFtree algorithm
achieves approximately a 150% improvement in throughput
from 3 Gbps to 7.5 Gbps for the victim flow worst case
throughput without affecting the congested flows after the
fault happened.

B. Synthetic Traffic Patterns - 2:1 oversubscribed fat-tree

We have also carried out two different experiments on
a 2:1 oversubscribed fat-tree as shown in Fig. 3b. In an
oversubscribed fat-tree, the downward path is not dedicated
to a single destination, but it is shared by several destina-
tions. The term 2:1 means that a downward path is shared
by two destinations. Furthermore, in order to show that lack
of network bandwidth is not the cause of the problem when
fat-trees are oversubscribed, we used quad data rate (QDR)
for link 1 to 6 in Fig. 3b (the links connecting switch A, B,
and C with the upper root switch).

In a 2:1 oversubscribed fat-tree, there are two situations
where the victim flows may suffer from HOL blocking
because the links are oversubscribed. The first case is similar
to section V-A1 where the performance reduction is due
to the upstream link being shared with the congestion
contributors. The second case is when both the upstream and
downstream links are shared as discussed in section V-B2.
For both experiments, we use the synthetic traffic flows {1-9,
5-9, 10-9} to evaluate the negative impact of HOL blocking
in the 2:1 oversubscribed fat-tree.The hot-spot is at node 9,
and node 1, 5 and 10 are the contributors. The victim flow
is started first and the contributors are added after 13s.

1) Experiment III: This experiment is similar to the
Experiment I except that it is performed on a 2:1 over-
subscribed fat-tree. Flow 2-7 is selected as the victim flow.
Fig. 9a shows the per flow throughput without the dFtree
algorithm where the victim (flow 2-7) drops from 12.9 Gbps
to 3.4 Gbps. On the opposite, as shown in Fig. 9b, the dFtree
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Figure 7. Experiment II with a faulty link using scenario in Fig. 3a.
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Figure 9. Experiment III using scenario in Fig. 3b.

algorithm managed to recover the throughput for the victim
flow 2-7 to 12.9 Gbps during congestion.

However, the recovery takes approximately 2s because the
hot-spot happens right after the performance sweeping and
it needs to wait for the next sweep to detect and reallocate
the hot-spot flows to the ’slow lane’.

Fig. 10 shows the comparison of the per flow worst case
bandwidth during the congestion with and without the dFtree
algorithm. It is obviously illustrated in Fig. 10 that the victim
flow worst case throughput with the dFtree algorithm has
improved approximately 278% from 3.4 Gbps to 12.9 Gbps
compared to not using the dFtree algorithm.

2) Experiment IV: In this experiment, we change the
victim to flow 2-11. This flow is selected because it shares
the same upstream and downstream link with the congested
flow 1-9.

Without the dFtree algorithm, as shown in Fig. 11a, both
victim flow 2-11 and congested flow 1-9 have a throughput
of approximately 2.2 Gbps because they share both the

2−7(victim) 10−9 5−9 1−9

B
an

dw
id

th
 (

M
b/

s)

0
40

00
80

00
12

00
0

16
00

0

Without dFtree
With dftree

Figure 10. Per flow worst case bandwidth during congestion.

upstream (link 1) and downstream link (link 5) during the
congestion after 13s. The victim flow 2-11 suffers severely
by the HOL blocking even though it is not communicating
with the hot-spot. Moreover, link 1 and 5 are QDR links
where victim flow should be able to achieve a bandwidth of
12.9 Gbps.

With dFtree, the victim flow (2-11) recovers to 12.9
Gbps after the congested flows are reassigned to the ’slow
lanes’. Furthermore, both congested flows 1-9 and 5-9 are
transmitting at 3.4 Gbps because flow 2-11 is no longer
sharing resources with the congested flow 1-9 after the ’slow
lane’ assignment.

To summarise, the dFtree algorithm reduces the negative
effect of HOL blocking when applied to an oversubscribed
fat-tree. Fig. 12 shows that dFtree increases 468% from 2.2
Gbps to 12.9 Gbps for the victim flow in the worst case
scenario during the congestion.

C. HPC Challenge Benchmark (HPCC)

In this experiment, we replaced the victim flows with
the HPC challenge benchmark b eff test suite [21]. The
endpoint hot-spot is created using Perftest by running the
traffic pattern presented in Fig. 3a for the non-oversubscribed
topology and in Fig. 3b for the 2:1 oversubscribed topology.
Simultaneously, we are running the HPCC benchmark in or-
der to study the impact of congestion on the traffic generated
by the HPCC benchmark. Even though the congested flows
are still synthetically generated, this scenario resembles the
network environment that an application could experience
during congestion.

Table II shows the comparison of the HPCC b eff results
with and without the dFtree algorithm in the presence
of congestion in a non-oversubscribed network. The most
interesting observation is that the randomly ordered ring
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Figure 11. Experiment IV using scenario in Fig. 3b.
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Figure 12. Per flow worst case bandwidth during congestion.

bandwidth increased by 49.34% with dFtree using only 2
VLs. We can see the improvement for all the latency and
bandwidth tests, which is expected, as they correspond to
the synthetic traffic patterns experiment that was carried out
in the previous section. The results for the oversubscribed
network are presented in Table III and the same trends are
visible as for the non-oversubscribed network. These results
clearly illustrate the performance gain with dFtree from the
application traffic pattern’s point of view.

D. Simulation Results

The main purpose of the simulation study is to show that
the dFtree algorithm scales, and that the trends correspond to
our cluster experiments. Another purpose of the simulation
is to show that if the congested flows are separated from the
normal traffic flows in a large network, this would increase
the network performance by avoiding the negative impact
of HOL blocking. We performed the simulation on a fully
populated 648-port fat-tree as shown in Fig. 4 with 1, 3 and
9 hot-spots.

In our simulator, we modified the packet generator to
always allocate a different VL (’slow lane’) for the packets
that are directed to the hot-spot. As a result, the simulator
isolates the hot-spot flows from the regular flows and reduce
the possibilities of HOL blocking. Our simulation shows the
best case results because it does not simulate the additional
management overhead in a real cluster required to identify
hot-spots and to migrate congested flows to a different
virtual lane.

For a single hot-spot scenario, node 1 was the hot spot,
and all the other nodes in the subnet were the contributors to
this hot-spot. In case of three hot-spots, nodes 1 , 217, and
433 were the hot-spots and the contributors were the node
group 1-216, 217-432, and 433-648 respectively. For a nine
hot-spot scenario, the hot-spots were nodes 1, 73, 145, 217,
289, 361, 433, 505 and 577 whereas the contributors consists
of node group 1-72, 73-144, 145-216, 217-288, 289-360,
361-432, 433-504, 505-576 and 577-648 respectively. For
the abovementioned scenarios, the contributors sent 5% of
their traffic to the hot-spot and remaining 95% to a randomly
chosen node in the subnet.

In Fig. 13, we observe that a single hot-spot dramatically
decreases the average throughput per node because of the
large number of victim flows. There are a least 32 nodes
(5%) contributing to the same hot-spot at any point in
time. If more hot-spots are added, the contributor traffic
is localised. Consequently, the impact on victim flows are
reduced and the throughput per node increases. For the same
reason, the relative improvement of the dFtree algorithm is
reduced when the number of hot-spots increases. The relative
improvement with the dFtree algorithm is 480.25% for 1
hot-spot, 345.32% for 3 hot-spots, and 169.17% for 9 hot-
spots. If the number of hot-spots are increased in the same
trend until it reaches 36 hot-spots, the improvement will



Table II
RESULTS FROM THE HPC CHALLENGE BENCHMARK WITH AND WITHOUT OUR DFTREE ALGORITHM FOR EXPERIMENT IN FIG. 3A.

Network latency and throughput a) without dFtree b) dFtree c) Improvement
Min Ping Pong Lat. (ms) 0.002131 0.001878 11.87%
Avg Ping Pong Lat. (ms) 0.026146 0.005665 78.33%
Max Ping Pong Lat. (ms) 0.055388 0.012994 76.54%
Naturally Ordered Ring Lat. (ms) 0.023699 0.007200 69.62%
Randomly Ordered Ring Lat. (ms) 0.027727 0.007469 73.06%
Min Ping Pong BW (MB/s) 336.331 539.374 60.37%
Avg Ping Pong BW (MB/s) 592.416 970.024 63.74%
Max Ping Pong BW (MB/s) 1589.203 1589.203 0.00%
Naturally Ordered Ring BW (MB/s) 383.843326 527.593704 37.45%
Randomly Ordered Ring BW (MB/s) 338.329033 505.272445 49.34%

Table III
RESULTS FROM THE HPC CHALLENGE BENCHMARK WITH AND WITHOUT OUR DFTREE FOR EXPERIMENT IN FIG. 3B.

Network latency and throughput a) without dFtree b) dFtree c) Improvement
Min Ping Pong Lat. (ms) 0.001997 0.001997 0.00%
Avg Ping Pong Lat. (ms) 0.010495 0.003995 61.93%
Max Ping Pong Lat. (ms) 0.041634 0.012934 68.93%
Naturally Ordered Ring Lat. (ms) 0.028419 0.007796 72.57%
Randomly Ordered Ring Lat. (ms) 0.031403 0.007721 75.41%
Min Ping Pong BW (MB/s) 358.235 554.179 54.70%
Avg Ping Pong BW (MB/s) 1088.153 1170.939 7.61%
Max Ping Pong BW (MB/s) 1590.408 1590.559 0.01%
Naturally Ordered Ring BW (MB/s) 413.114906 511.079782 23.71%
Randomly Ordered Ring BW (MB/s) 338.930349 517.198255 52.60%
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Figure 13. Simulation results for 648-switch.

be minimal. This is due to the fact that the hot-spots are
becoming increasingly more localised until each leaf switch
has a hot-spot. Thus, the traffic pattern naturally splits the
congested flows from the uncongested flows and increase
overall network performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated the basic concept of
dynamic networking in InfinBand by combining the per-
formance manager and the subnet manager. By applying

this concept to several congestion scenarios in a fat-tree
topology, we are able to improve the performance using
only 2 VLs, a fast lane for normal flows and a slow lane
for congested flows. During the congestion, the performance
manager is responsible for identifying the hot-spot flows
and our host side dynamic reconfiguration mechanism is
used to dynamically reassign flows into a seperate VL (slow
lane). Our implementation in OpenSM achieved a 52.60%
improvement in throughput on a cluster experiment and
480.25% improvement in a large-scale simulated environ-
ment when compared with the conventional fat-tree routing.

In the future, we plan to merge this work with the Infini-
Band congestion control mechanism that uses the forward
explicit congestion notification (FECN) to determine the hot-
spot and backward explicit congestion notification (BECN)
to identify its contributors. This combination can detect the
hot-spot flows faster and it is independent of the performance
sweeping interval. Furthermore, we can also remove the need
for source throttling of the contributors in the IB congestion
control mechanism.
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