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a b s t r a c t 

Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of 

highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. 

The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of atten- 

tiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic 

GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI 

endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that 

can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the 

Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 

2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a bench- 

mark for different com puter vision methods applied to the multi-class endoscopic images and promote to 

build new approaches that could reliably be used in clinics. We report the performance of 21 participat- 

ing teams over a period of three consecutive years and provide a detailed analysis of the methods used 

by the participants, highlighting the challenges and shortcomings of the current approaches and dissect 

their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an 
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improvement on maximum Ma  

and 95.20% in 2019 challenges, 

This is an open access art  
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. Introduction 

Gastrointestinal (GI) cancers contribute to a large part of 

ancer-related deaths worldwide. Colorectal Cancer (CRC) ranks 

hird in terms of cancer incidences and second in terms of mor- 

ality ( Bray et al., 2018 ). The 5-year survival rates for colon cancer

s 68% and that of stomach cancer is only up to 44% ( Asplund et al.,

018 ). Detection and removal of pre-cancerous lesions provides 

he opportunity to prevent cancer and improve the survival rate 

o almost 100% ( Levin et al., 2008 ). Early diagnosis and treat- 

ent can be facilitated by regular screening of patients at average 

isks before the disease becomes symptomatic. Screening of high- 

revalence areas of infection, such as stomach and the large bowel 

CRC), is particularly important to prevent cancer through early de- 

ection. The endoscopic procedures are the gold-standard for the 

iagnosis of GI abnormalities and cancers ( Pogorelov et al., 2018b ). 

he design of an automated Computer Aided Detection (CADe) and 

omputer Aided Diagnosis (CADx) system that can be integrated 

nto the clinical workflow is essential ( Suzuki, 2012 ), however, it 

equires careful evaluation of the built methods on a benchmark 

ataset. Additionally, these methods need to be assessed for their 

linical applicability such as generalization in context to patient 

ariability, and real-time processing capability. 

This paper presents a comprehensive analysis of the results of 

ultimedia for Medicine Task (Medico) Task at MediaEval 2017 

 Riegler et al., 2017 ) (Medico 2017), Medico Task at MediaEval 2018 

 Pogorelov et al., 2018b ) (Medico 2018), and the BioMedia Grand 

hallenge 2019 ( Hicks et al., 2019a ) at ACM Multimedia (BioMedia 

019). These challenges pose four clinically relevant rigorous tasks 

n GI endoscopic images and videos that include: 

1. Algorithm performance evaluation through a frame level “clas- 

sification task” (CADx) for multi-class GI tract findings 

2. An “efficiency task” to evaluate the methods designed to 

achieve a trade-off between speed and accuracy 

3. An “automated reporting task” on patient endoscopy video to 

analyse the efficacy of the built methods on videos 

4. A “hardware task” to benchmark algorithms on the same sys- 

tem 

.1. Relevance of GI challenges 

The Medico 2017 was the first challenge that utilizes a multi- 

lass dataset (eight classes) for GI endoscopic image classifica- 

ion. The challenge was based on a multi-center, multi-modal, and 

ulti-organ dataset that includes 8,0 0 0 endoscopic images col- 

ected, annotated, and verified by experienced endoscopists from 

our hospitals in Norway. With the success of the first challenge, 

e further collected and annotated 14,033 endoscopic images that 

ere used at the Medico Task 2018 and the BioMedia Challenge 

019. The goal of organizing these challenges is to benchmark en- 

oscopic image classification Machine Learning (ML) approaches 

ith the specific focus on speed and robustness of the meth- 

ds, which are essential for any clinical translation. These chal- 

enges have encouraged us to annotate and further release the 

ataset such as Kvasir-Capsule ( Smedsrud et al., 2020 ), Kvasir-SEG 

 Jha et al., 2020 ) and Hyper-Kvasir dataset ( Borgli, 2020 ). 
2 
thew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018

and a significant increase in computational speed over consecutive years. 

© 2021 The Authors. Published by Elsevier B.V. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

.2. Motivation of the study 

The introduction of new imaging technology and progress in 

rtificial Intelligence (AI) system for detailed observation and in- 

erpretation to improve the diagnostic capability of medical im- 

ges has motivated a wide range of multimedia researchers. GI 

ndoscopy requires the integration of experienced endoscopists’ 

nowledge to overcome the missed classification of diseases that 

ubsequently ensure effective early disease detection. This could 

ignificantly reduce the miss-detection rate during an endoscopy 

xamination. Therefore, there is a need for efficient CADx systems 

hat can support endoscopists in real-time to locate clinically rel- 

vant markers and regions that are overlooked during the endo- 

copic procedure. A CADx system could reduce the workload of ex- 

ert endoscopists during the examinations. Moreover, it could also 

id inexperienced endoscopists for decision-making, which would 

ignificantly help to solve the problem of inter- and intra-observer 

ariability in clinical endoscopies worldwide. Furthermore, the au- 

omatic reporting generated by AI methods can help reduce an en- 

oscopist’s workload, thereby improving their productivity and fo- 

us for critical cases. 

Most designed computer vision methods and datasets focus on 

 limited set of lesions and very often limited to a specific organ. 

n practice, in particular to GI organs, routine surveillance can in- 

lude multiple organs. For example, an upper GI surveillance can 

nclude oesophagus, stomach and first part of duodenum while 

ower GI can include small intestine to large intestine. Similarly, 

isease types can vary from organ to organ which will make it 

ard to detect all lesion occurrence at multiple GI locations in any 

urveillance. At times, both gastroscopy (upper GI endoscopy) and 

olonoscopy (lower GI endoscopy) are recommended for some pa- 

ients. In these scenarios, the methods built with one specific or- 

an or disease type is likely to have minimal clinical applicability 

nd would not provide thorough clinical evaluation. We aimed to 

urate multi-organ gastroscopy datasets and challenge researchers 

o design methods for a comprehensive and challenging real-world 

ataset. 

.3. Task descriptions 

Each challenge included four tasks. The teams were required to 

articipate in the main “classification” task. However, the remain- 

ng three tasks were optional. Below, we briefly describe each task. 

.3.1. Classification task (required) 

The goal of this task is to evaluate the classification methods 

or classifying anatomical landmarks (e.g., z-line, pylorus, cecum), 

athological findings (esophagitis, polyps, ulcerative colitis), polyp 

emoval cases (dyed and lifted polyps, dyed resection margins), 

nd normal and regular cases (e.g., normal colon mucosa, stool, in- 

trument etc.) inside the GI tract. This is to address the require- 

ent for high classification accuracy needed for the development 

f computer-aided tools in the GI endoscopy. The teams are ranked 

ased on their classification algorithm accuracy on 16 classes of GI 

ataset (refer Fig. 1 ). 

The participants were instructed to design, train, and imple- 

ent a classifier on the available training dataset. Subsequently, 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Examples images from the 16 classes of Medico 2018 and BioMedia 2019 

dataset. 
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1 https://github.com/stevenah/biomedia- 2019- submission- evaluation . 
he test dataset was released where the participants could test 

heir model and predicted labels were sent to the organizers for 

valuation. For the task submission, the participants were asked to 

reate a “.csv” file. The “.csv” file should contain information about 

he image label prediction in a single line starting with the “name 

f the predicted file”, “predicted label” and “model’s confidence of 

he prediction”. Different standard metrics were used to evaluate 

hese methods that are detailed in Section 4 . 

.3.2. Efficiency task (optional) 

Real-time performance of algorithms is required for clinical ap- 

licability of the methods. Analysis of the GI procedure in real- 

ime can provide an opportunity for the experts to acquire feed- 

ack in real-time. However, fast inference models often compro- 

ise in accuracy. Thus, the goal for the efficiency task was to de- 

ign the model that provides the best trade-off between speed and 

ccuracy. 

In most high-resolution GI endoscopes, the standard frame rates 

s over 45 Frames per second (FPS). Therefore, this task is aimed 

t building an efficient lightweight model that has the least la- 

ency in the inference time. For this task, the participants were 

equired to capture processing time in millisecond for the infer- 

nce of each test image on their system and report this time along 

ith the GPU/CPU architecture to the organizers. The task submis- 

ion procedure is quite similar to the classification task with only 

ne difference, i.e., in efficiency task, the “processing time (in mil- 

isecond) for each image” must be included in the “.csv” file after 

he model’s confidence in the prediction line. The metrics for cal- 

ulating “classification performance” in both classification and effi- 

iency tasks are the same, however, with an additional FPS metric 

or the efficiency task. FPS was estimated from the average time 

eported by each team. A final ranking was computed by using a 

eighted score based classification accuracy metric and FPS (refer 

ection 4.2 ). It is to be noted that the participating team can sub- 

it the same or different models for classification and efficiency 

asks for all 3 challenges. 
3 
.3.3. Automatic report generation task (optional) 

Among several responsibilities one of the crucial task of gas- 

roenterologists is to generate endoscopic procedure reports after 

ach endoscopy session. The World Endoscopy Organization (WEO) 

ecommends using Minimal Standard for Reporting (MSR) and 

inimal Standard Terminology (MST) for describing the endoscopic 

ndings. This is often time-consuming and requires huge amount 

f administrative work ( Woolhandler and Himmelstein, 2014 ). In 

ddition, due to the inter operator variability, there is a large varia- 

ion in such reporting which leads to inconsistent interpretation of 

ndings and reporting mechanism ( Aabakken et al., 2014 ). Intend- 

ng to generate the standardized endoscopy reports automatically, 

e have offered this task in MediaEval and Biomedia challenges 

 Hicks et al., 2019b ). A systematic and structured report prepara- 

ion that describes the endoscopic findings can play a vital role in 

he development of an fast, automated and accurate reporting sys- 

em. This will enable to accelerate the clinical procedures and min- 

mize operator variability. The extensive use of GI endoscopy for 

iagnosis and treatment demands the requirement of standardized 

nd user-friendly automated reporting systems at present. 

In the presented task, the participants were required to au- 

omatically generate a text report of the endoscopic procedure 

hat describes the detected findings according to the WEO proto- 

ol ( Hicks et al., 2019b ). The organizers provided the description 

list of requirements) of what should be generated in the report. 

he assessment follows the list of requirements, and the reports 

ere manually checked by two of the medical partners. We pro- 

ided three videos for Medico 2017 and Medico 2018 for an auto- 

atic report generation task. For the BioMedia 2019, the number 

f videos was increased to six. The medical experts checked the 

ractical usefulness of the report in terms of the medical domain 

hospital). 

.3.4. Hardware task (optional) 

In BioMedia 2019, we introduced the hardware task. In this 

hallenge, the participants were asked to submit a docker image 

hat included checkpoint of the trained model and test script for 

heir submission. The requirement for this submission included the 

odel trained in the classification task (Task 1). Each docker sub- 

ission was then run on the test images by the organizers on 

VIDIA GTX 1080 Ti GPU. This provided an opportunity to bench- 

ark the built methods on the same hardware by an independent 

rganizing team. Both the accuracy and speed were taken into ac- 

ount for the ranking of the methods for this task. The detailed 

nformation on the submission procedure can be found here. 1 

. Related work 

While automatic classification, detection and segmentation of 

arious GI lesions and anatomical landmarks have been recently 

tudied, most of these focus on colonoscopy data that include 

olyp detection and segmentation ( Poon et al., 2020; Lee et al., 

020; Song et al., 2020; Yamada et al., 2019; Akbari et al., 2018; Jha 

t al., 2021 ), intestinal cancer detection ( Wan et al., 2019 ), stomach

esion detection ( Krebs et al., 2020 ) and ulcerative colitis detection 

 Khorasani et al., 2020 ). However, the very nature of GI endoscopic 

rocedures can range from esophageal to stomach to small and 

arge intestine. Some recent works have taken this into account 

nd have designed models for multi GI organ classification and de- 

ection ( Thambawita et al., 2020; Iakovidis et al., 2018; Ali et al., 

020a; Chheda et al., 2020; Poudel et al., 2020 ). 

In addition to the research from the individual research group, 

ecently, a few challenges have been initiated in the field of GI 

https://github.com/stevenah/biomedia-2019-submission-evaluation
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Table 1 

Overview of GI endoscopy challenges. Here, WL = White Light Endoscopy, NBI = Narrow Band Imaging, WCE = Wireless capsule endoscopy, FL = Fluorescence Endoscopy. 

The total number of images and videos offered at different task are summed and presented in ‘Size’ class. 

Challenge Name Organ Modality Findings Size Dataset Availability 

Automatic Polyp Detection in 

Colonoscopy videos 2015 

( Bernal et al., 2017 ) 

Colon WL Polyps 808 images & 38 

videos 

By request 

Medico 2017 ( Riegler et al., 2017 ) Entire GI WL Polyps, esophagitis, ulcerative colitis, 

z-line, pylorus, cecum, dyed polyp, dyed 

resection margins, stool 

8,000 images Open academic 

GIANA 2017 ( Bernal and 

Aymeric, 2017 ) 

Colon WL Polyps & angiodysplasia 3462 images & 

38 videos 

By request 

GIANA 2018 ( Angermann et al., 

2017; Bernal et al., 2018 ) 

Colon WL, WCE Polyps & small bowel lesions 8,262 images & 

38 videos 

By request 

Medico 2018 ( Pogorelov et al., 

2018b ) 

Entire GI WL Blurry-nothing, colon-clear, 

dyed-lifted-polyp, dyed-resection-margin, 

esophagitis, instrument, normal-cecum, 

normal-pylorus, normal z-line, 

out-of-patient, polyp, retroflex-rectum, 

retroflex-stomach, stool-inclusion, 

stool-plenty, ulcerative-colitis 

14,033 images Open academic 

EAD 2019 ( Ali et al., 2019 ) Entire GI & 

bladder 

NBI, WL, FL, WCE Blur, bubbles, contrast, imaging artefact, 

saturation, specularity, instrument 

2,192 images Open academic 

BioMedia 2019 ( Hicks et al., 

2019a ) 

Entire GI WL Blurry-nothing, colon-clear, 

dyed-lifted-polyp, dyed-resection-margin, 

esophagitis, instrument, normal-cecum, 

normal-pylorus, normal Z-line, 

out-of-patient, polyp, retroflex-rectum, 

retroflex-stomach, stool-inclusion, 

stool-plenty, ulcerative-colitis 

14,033 images Open academic 

EAD 2020 ( Ali et al., 2019 ) Entire GI & 

bladder 

NBI, WL, FL, WCE Blur, bubbles, blood, contrast, imaging 

artefact, saturation, specularity, 

instrument 

2,916 images Open academic 

EDD 2020 ( Ali et al., 2020a ) Entire GI NBI, WL Barrett’s esophagus, high-grade dysplasia, 

suspicious (low-grade), polyp, cancer 

386 images Open academic 
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ndoscopy that uses either still images or both still images and 

ideos. Several ML based methods have been proposed on these 

ndoscopy challenge datasets. However, most of the endoscopy 

hallenges focused only on colorectal polyp and cancer localiza- 

ion, detection and segmentation ( Bernal et al., 2017 ). Additionally, 

he used datasets are either scarce (only 386 image frames were 

eleased for 5 disease classes in ( Ali et al., 2020a )) or have not

een benchmarked on the same dataset for different challenges 

ver time (for example, EndoVis2015 challenge on Early Barrett’s 

ancer detection 

2 ). As a result, the conclusions drawn from these 

hallenges are not comparable from one challenge to the other. In 

ddition, many such datasets are not publicly available, making it 

ifficult for further analysis and comparison ( Wang et al., 2018; 

ernal et al., 2017; Bernal and Aymeric, 2017; Angermann et al., 

017; Bernal et al., 2018 ). 

To address the need of benchmarking methods on the same 

ataset, different international challenges have been organized. 

olyp detection challenge on colonoscopy videos was organized by 

 Bernal et al., 2017 ) at IEEE International Symposium on Biomed- 

cal Imaging (ISBI), and Medical Image and Computing and Com- 

uter Assisted Intervention (MICCAI) conference in 2015 3 . The or- 

anizers released 808 still images and 38 videos. A comprehensive 

tudy of the results on this dataset from 8 different participating 

eams concluded that there was still a potential for improvement 

 Bernal et al., 2017 ) in the polyp detection task. 

Our team organized the first MediaEval Medico challenge in 

017 ( Riegler et al., 2017 ) that aimed to compare baseline for 

omputer vision classification methods. With over 8,0 0 0 annotated 

ideo frames consisting of multiple endoscopic findings for the en- 

ire GI tract, including pre- and post-treatment patients and eight 

ifferent categories, we established a first comprehensive dataset 
2 https://endovissub- barrett.grand- challenge.org . 
3 https://polyp.grand-challenge.org/ . 

4 
hat mimics various endoscopic procedures as a whole. Bernel 

t al. launched GIANA challenge (2017 and 2018) 4 where they 

roaden the scope of their past challenge by including additional 

asks such as detection of lesions in Wireless Capsule Endoscopy 

WCE), polyp detection, and polyp segmentation task. However, 

heir task assignment was still focused on colonoscopy data only. 

o further quantify and improve baseline methods and promote 

lgorithm development, we organized a consecutive Medico task 

018 challenge ( Pogorelov et al., 2018b ). This challenge had an ex- 

ended dataset of 14,033 GI endoscopy frames and aimed at clas- 

ifying 16 class categories for multiple GI endoscopy organs. For 

etter longitudinal analysis and method benchmarking, we used 

he same dataset to organize a recent BioMedia challenge 2019 

 Hicks et al., 2019a ). Another challenge in 2019 dedicated for arte- 

act detection and segmentation in endoscopy (EAD2019, ( Ali et al., 

020b )) released more than 2,192 still endoscopy frames that in- 

luded multi-organ and multi-center data and aimed at classify- 

ng 6 different artefact classes 5 . A comprehensive analysis of the 

ethods evaluated on EAD2019 challenge revealed the need for 

ore quantifiable metrics and the requirement of clinical applica- 

ility tests with current Deep Learning (DL) approaches. The same 

eam launched EndoCV2020 challenge 6 this year with an additional 

ub-challenge on “Endoscopy disease detection (EDD2020)”. Even 

hough this sub-challenge incorporated multi-organ and multi- 

odal endoscopy data, the released dataset has only 386 anno- 

ated frames and was included only 5 class categories ( Ali et al., 

020a ). Table 1 presents the overview of GI challenges held and 

maging modalities used over past 5 years. 

In summary, there is still a need for comprehensive algorithm 

enchmarking datasets in GI endoscopy, especially due to the var- 
4 https://giana.grand-challenge.org/ . 
5 https://ead2019.grand-challenge.org/ . 
6 https://endocv.grand-challenge.org . 

https://endovissub-barrett.grand-challenge.org
https://polyp.grand-challenge.org/
https://giana.grand-challenge.org/
https://ead2019.grand-challenge.org/
https://endocv.grand-challenge.org
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Fig. 2. Example of extracted frame from each of the 6 videos provided to the par- 

ticipants for for automatic report generation task. 
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Table 2 

An overview of video dataset with expected findings, length, and reso- 

lution provided for automatic report generation ( Hicks et al., 2019a ). 

Expected Findings Length Resolution 

Esophagitis 00:51 1920 × 1072 

Stool 00:02 1920 × 1072 

Polyp resection, bleeding 02:00 720 × 576 

Bleeding ulcer, instrument 01:08 1280 × 1024 

Polyp, lifting and resection, instrument 05:11 720 × 576 

Normal colon 00:57 720 × 576 
ed nature of endoscopic findings and abnormalities. Mainly, as 

ost current datasets are limited by sample size, single modal- 

ty and single organ data, methods built on them cannot be ap- 

lied to wider endoscopy settings and GI organs. Additionally, most 

f these datasets are not easily accessible as they require special 

ermissions and email correspondences prior to their use. Such a 

ractice could discourage computational scientists to built and val- 

date their method on these benchmarks. 

Motivated by the success of DL techniques in other medical 

maging domains, we initiated collaborations with four hospitals 

n Norway to collect, curate, annotate, and publish open-access 

atasets. Medico 2017, Medico 2018, and Biomedia 2019 are few 

ttempts to fulfill the challenges related to method comparison for 

he multi-class GI endoscopy and to address the lack of availability 

f publicly available datasets. In this paper, we detail on our three 

hallenge datasets from 2017 to 2019 under “MediaEval Medico GI 

ndoscopy Challenge Dataset” and provide a comprehensive analy- 

is of their outcomes. 

. Medico GI-endoscopy challenge datasets 

.1. Medico 2017 

The dataset for Medico 2017 consists of both images and videos. 

he “Kvasir” dataset ( Pogorelov et al., 2017b ) is a multi-class 

ataset consisting of 1,0 0 0 images per class with a total of 8,0 0 0

mages altogether for eight different classes. These classes con- 

ist of pathological findings (esophagitis, polyps, ulcerative colitis), 

natomical landmarks (z-line, pylorus, cecum), and normal and 

egular findings (normal colon mucosa, stool), and polyp removal 

post-treatment) cases (dyed and lifted polyps, dyed resection mar- 

ins). 

In the Medico 2017, the entire dataset was divided into train- 

ng and test dataset. The training and test set consists of 4,0 0 0 

mages each. The participants were provided with pre-split train- 

est categories for all 8 classes with 500 images per class in each 

plit. However, the labels for test set were not provided. The im- 

ge size varied from 720 × 576 up to 1920 × 1072 pixels taken 

rom a high-resolution Olympus endoscope. Some of the images 

n the dataset contained a green box in the left-bottom corner 

f the image showing the position of the scope inside the bowel 

 Pogorelov et al., 2017b ) (see Fig. 1 ). In addition, we provided a

eparate folder with the extracted visual global features (GFs) for 

ach of the images that included global features such as Joint Com- 

osite Descriptor (JCD), Tamura, ColorLayout (CL), edge histogram 

EH), AutoColorCorrelogram, and Pyramid Histogram of Oriented 

radients (PHOG) ( Lux and Chatzichristofis, 2008 ). 

Three videos containing polyps, bleeding, and Z-line were pro- 

ided for automatic report generation task. The videos contain the 

iseases or findings included in the Kvasir dataset. The aim was 

o use the video cases to generate automated text reports that de- 

cribed the findings in all three videos. 

.2. Medico 2018 

The Medico 2018 dataset is the combination of the 

vasir dataset ( Pogorelov et al., 2017b ) and Nerthus dataset 

 Pogorelov et al., 2017c ). The Medico 2018 dataset consists of 16 

lasses. Fig. 1 shows the sample images used in Medico 2018 

nd BioMedia 2019. Initially, the training dataset that consisted 

f 5,293 images was released. The participants were asked to 

evelop the algorithms based on this dataset. Later on, 8,740 test 

mages were released. The Medico challenge 2018 dataset contains 

he images from the previous challenge and 6,033 additional 

mages and eight new classes. The additional classes used in the 

ask are colon-clear, stool-inclusions, stool-plenty, blurry-nothing, 
5 
ut-of-patient, and the pre-, while and therapeutic findings such 

s dyed-lifted-polyps, dyed-resection-margins, and the instrument 

lass ( Pogorelov et al., 2018b ). Both the training and test datasets 

ere imbalanced (refer Fig. 3 ) due to increased class numbers and 

ery few samples for some classes, for example, only four images 

or out-of-patient class while 613 samples were present for the 

olyp class. In addition to this, similar to the 2017 challenge, we 

rovided the same three videos for the text-report generation task. 

.3. BioMedia 2019 

The BioMedia 2019 consisted of the same two types of datasets 

s proposed in the 2018 challenge. However, in addition to the 

lassification task, we increased the total number of videos to 

ix for the report generation tasks, we also included a hardware 

ask for fair comparison of submissions. The details on the im- 

ge dataset is the same as for 2018 presented above and in sum- 

ary Fig. 3 . The video dataset consisted of six videos ranging from 

20 × 576 to 1920 × 1072 pixels. The length of the video varies 

rom 51 s up to 5 min and 11 s. A sample of an extracted video

rame from each video dataset for the automatic report generation 

ask is shown in Fig. 2 . The tasks on the videos were similar to

hose of the image frames. The details about the video dataset is 

resented in Table 2 . More details about the dataset can be found 

n our task overview paper ( Hicks et al., 2019a ). 

The participants had a total of three months for submission in 

ll of the challenges. The test datasets were provided one month 

fter the release of the training dataset. The challenge datasets can 

e found here ( Pogorelov et al., 2017b; 2017c ). 

. Evaluation metrics 

Standard evaluation metrics used to quantify image classifi- 

ation methods such as recall, precision, F1-score and accuracy 

 Eq. (1) –(4) ) were used for all three challenges. To determine the 

nal score and rank of the participating teams, we used Matthews 

orrelation coefficient (MCC) ( Matthews, 1975 ), which provides a 
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Fig. 3. Summary of the Medico 2018 and BioMedia 2019 dataset. 
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7 http://www.multimediaeval.org/mediaeval2017/medico/ . 
8 http://www.multimediaeval.org/mediaeval2018/medico/ . 
9 https://github.com/kelkalot/biomedia-2019 . 
eliable statistical measure and can handle class imbalance prob- 

ems in datasets. MCC can be computed from the confusion matrix 

f true and false positives and negatives (see Eq. (5) ). 

ecall (REC) = 

T P 

T P + F N 

(1) 

pecificity (SP EC) = 

T N 

T N + F P 
(2) 

recision (P REC) = 

T P 

T P + F P 
(3) 

ccuracy (AC C ) = 

T P + T N 

T P + T N + F P + F N 

(4) 

CC = 

(T P × T N) − (F N × F P ) √ 

n 

, (5) 

here n = (T P + F N)(T N + F P )(T P + F P )(T N + F N) 

 1 -score (F 1) = 2 × (p × r) 

p + r 
(6) 

rame Per Second (F P S) = 

1 

sec/ f rame 
(7) 

In the above equations, p is precision, r is recall, and TP , FP , TN ,

N represent true positives, false positives, true negatives, and false 

egatives, respectively, for the classification outputs. If the MCC 

alues are equal for more than one team, the efficiency task cri- 

eria was considered where we considered processing speed of the 

lgorithms, and the amount of the training data used to obtain the 

est result ( Pogorelov et al., 2018b ). The participants were allowed 

o submit the results up to five runs in total. The more detailed de- 
6 
criptions of the challenge can be found on their respective chal- 

enge webpages. 7 , 8 , 9 

.1. Metrics for classification task 

The classification task aimed at achieving higher accuracy for 

he multi-class classification task of the GI endoscopy findings and 

iseases. To perform a complete and thorough evaluation of this 

ask, we provided all standard classification metrics, including sen- 

itivity, specificity, precision, accuracy, and F1-score. However, due 

o the class imbalance in some classes, MCC was used for ranking 

he participants. 

.2. Metrics for efficiency task 

The goal of the efficient classification task is to score the par- 

icipants based on the test time recorded for their algorithm. The 

ain motivation behind this task is to identify the clinical usability 

f these methods as speed is one of the required criteria. For this 

ask, we used the FPS estimation of each method on the provided 

mage dataset. 

The same evaluation metrics “MCC,” was used. The “speed” was 

alculated based on the average time the algorithm takes to clas- 

ify the single image in milliseconds. The submissions were ranked 

n the basis of the combination of “classification performance”

nd “speed”. For balancing the two requirements, a threshold of 

5% was set on specificity and sensitivity ( Pogorelov et al., 2018a ) 

hat is a standard threshold for an automatic detection system for 

olonoscopies in industry. Only those submissions that reached or 

urpassed this threshold was considered as a valid submission. If 

ore than one teams have the same time, higher sensitivity and 

http://www.multimediaeval.org/mediaeval2017/medico/
http://www.multimediaeval.org/mediaeval2018/medico/
https://github.com/kelkalot/biomedia-2019
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Table 3 

Summary information of participating teams in Medico 2017, Medico 

2018, and the BioMedia 2019, ‘X’ = Team participated, ‘-’ = No par- 

ticipation. 

Chal. Team Name Task 1 Task 2 Task 3 Task 4 

2017 HKBU X X - - 

ITEC-AAU X X - - 

SLC-UMD X X - - 

FAST-NU-DS X X - - 

SIMULA X X - - 

2018 LesCats X X - - 

RUNE X - - - 

UMM-SIM X - - - 

ParaNoMundo X X - - 

AAUITEC X - - - 

SIMULA X X - - 

FAST-NU-DS X X - - 

NOAT X - - - 

HKBU X X - - 

S@M X - - - 

HCMUS X X - - 

2019 uniaugsburg X X X X 

CIISR X - X X 

DeepBlueAI X X - - 

Mcdull X - - - 

HCMUS X X - - 
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pecificity were taken as the better performing one ( Hicks et al., 

019a ). 

.3. Automatic report generation task 

Teams participating in this task were asked to provide the gen- 

rated text report describing the detection results on the pro- 

ided video dataset. Two medical experts ranked these automat- 

cally generated reports. To aid the senior gastroenterologists in 

heir assessment, they were provided with five team ranking pro- 

ocols. These included: 

1. Does the provided report has clarity and pass the confidence 

from a clinical point of view? 

2. Limitations of the generated report (if any) 

3. How useful would the report be in the clinic? 

4. Did the teams incorporated any useful suggestions for improve- 

ment or additions? 

5. Did the teams provide any useful findings as other comments 

in their report? 

. Participating methods 

Table 3 summarizes the participation of each team with ‘X’ de- 

oting the information about the participants who participated in 

he particular task for 2017, 2018, and 2019 challenges and the 

asks posed in the consecutive years. A wide range of methods 

ere developed in each challenge for which a summary is pro- 

ided in Table 4 . 

.1. Methods used in Medico 2017 

In this challenge, there were 5 participating teams that included 

he organizers. However, the organizers submissions were not con- 

idered in the ranking of the challenge. Below we briefly describe 

ethod of each team. 

HKBU: Team HKBU ( Liu et al., 2017 ) designed a two-stage learn- 

ng strategy for the classification of GI endoscopy images. In the 

rst stage, they used a manifold learning method called Bidi- 

ectional Marginal Fisher Analysis (BMFA) to project the original 

ataset to a low dimensional space with the key discriminant in- 

ormation being well preserved. In the second stage, a multi-class 

upport Vector Machine (SVM) was used for the classification. 
7 
ITEC-AAU: The method proposed by team ITEC-AAU 

 Petscharnig et al., 2017 ) used an Inception-like Convolutional Neu- 

al Network (CNN) architecture with a GoogleNet ( Szegedy et al., 

015 ) backbone. Data augmentation with fixed-cropping was also 

sed on both training and test datasets. This step provided an 

dvantage for obtaining low inference time. 

SCL-UMD: Transfer learning-based feature extraction technique 

as used by team SCL-UMD ( Agrawal et al., 2017 ). The team used 

re-trained CNN models that included VGGNet ( Simonyan and Zis- 

erman, 2014 ) and Inception-v3 trained on ImageNet ( Deng et al., 

009 ) dataset and fine-tune them on the provided training data. 

he obtained features were combined with the features pro- 

ided by the organizers. Their best model was the combination 

f three features, namely, baseline features provided by orgnaiz- 

rs, Inception-V3 features, and VGGNet features. A multi-class 

VM classifier was trained on these extracted features. The hyper- 

arameter of SVM was tuned using 5-fold cross-validation in the 

raining dataset. The optimal kernel choice for SVM was a linear 

ernel in their case. 

FAST-NU-DS: Team FAST-NU-DS ( Naqvi et al., 2017 ) used an en- 

emble of texture features for classification of GI endoscopic im- 

ges. The main motivation of their approach was to combine in- 

ormation from various local features that included Haralick tex- 

ure features and local binary patterns for successful classification. 

hese features were selected at the training stage using a 10-fold 

ross-validation strategy. A Logistic Regression (LR) classifier was 

sed to train the model. The outputs of the model were combined 

sing a majority voting strategy. 

SIMULA: Team SIMULA ( Pogorelov et al., 2017a ) approached the 

ask by utilizing both GFs and CNNs. For GFs based approach, 6 

F were experimented with a random tree, Random Forest (RF), 

nd Logistic Model Tree (LMT) classifiers from the WEKA software 

 Hall et al., 2009 ). The best classification results were obtained 

or LMT. Similarly, for the CNN based approach, the team experi- 

ented with the Inception-v3 and ResNet-50 ( He et al., 2016 ) pre- 

rained on ImageNet ( Deng et al., 2009 ). Their best performing ap- 

roach was using extracted features from fine-tuned ResNet-50 ar- 

hitecture pre-trained on ImageNet and LMT classifier. 

.2. Methods used in Medico 2018 

10 teams participated in the Medico 2018. Additionally, there 

as 1 submission from the organizers team, however, this was not 

onsidered in the ranking. Below we briefly present methods for 

ach participating team. 

FAST-NU-DS: Team FAST-NU-DS ( Khan and Tahir, 2018 ) inves- 

igated various combinations of Haralick texture features, LIRE 

eatures, and Deep features. Deep features were extracted using 

GG19 pre-trained on the ImageNet dataset. Various models were 

hen trained using an ensemble of classifiers, including LR, RF, and 

xtremely random trees. Each model was trained using 10-fold 

ross-validation of the training data and with various combinations 

f features. On test data, the best results were obtained from the 

ombination of Haralick and LIRE features. 

HCMUS: Team HCMUS ( Hoang et al., 2018 ) used a combina- 

ion of residual neural network and Faster R-CNN model (both pre- 

rained on ImageNet) for classification of the GI endoscopic images. 

heir approach included data preparation, augmentation, and clas- 

ification. As a data preparation step, regions containing symptoms 

f diseases were annotated to train the abnormality localization 

odule. Additionally, some labels of the development dataset were 

leaned, and dataset augmentation strategies were applied to bal- 

nce the number of images between different classes. Their best 

esult was obtained by ResNet-101 and Faster R-CNN trained on 

he re-labeled training dataset combined with their augmented in- 

trument dataset. This is because the instrument class has rela- 
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Table 4 

Summary of the participating teams algorithm for Medico 2017, and Medico 2018, and the BioMedia 2019. Here, ED = Eigen decomposition, GD = Gradient Descent, SMO = Sequential minimal optimization, BMFA = Bidirectional 

Marginal Fisher Analysis, SGD = Stochastic gradient descent. 

Challenge Team Name Algorithm Backbone Nature Choice Basis Data Aug. Loss function Optimizer GPU/CPU 

HKBU ( Liu et al., 2017 ) BMFA + νSVM N/A Cascade Context-speed No Hindge loss ED SMO Intel 

Quad-Core 

i7 

Medico 2017 ITEC-AAU ( Petscharnig et al., 2017 ) CNN (Pre-trained Network) GoogleNet General Speed Yes - - - 

SLC-UMD ( Agrawal et al., 2017 ) CNN (Pre-trained Network) Inception-v3, VGGNet Ensemble Accuracy No Hindge loss SGD N/A 

FAST-NU-DS ( Naqvi et al., 2017 ) Texture feature + LIRE 

features + LRC 

N/A Ensemble Accuracy Yes Cross-entropy N/A Intel Core 

i5-10600 

SIMULA ( Pogorelov et al., 2017a ) ResNet + LMT Inception-v3, ResNet-50 Combined 

feature 

Accuracy No Cross-entropy - GTX 1080Ti 

HCMUS ( Hoang et al., 2018 ) ResNet + Faster R-CNN ResNet-101 Feature 

pyramid 

Accuracy Yes Cross-entropy Adam Tesla K80 

ParaNoMundo ( Dias and Dias, 2018a ) DenseNet DenseNet-201 General Accuracy No Cross-entropy SGD N/A 

Medico 2018 UMM-SIM ( Kirkerød et al., 2018 ) GAN + InceptionResNet-v2 InceptionResNet-v2 cascade Accuracy No Cross-entropy Adam GTX 1080Ti 

S@M ( Thambawita et al., 2018 ) ResNet + DenseNet + MLP ResNet-152, DenseNet-161 Ensemble Accuracy Yes Cross-entropy SGD GTX 1080Ti 

AAUITEC ( Taschwer et al., 2018 ) GF + GoogleNet+ L-SVM GoogleNet Combined 

feature 

Accuracy No - - - 

LesCats ( Hicks et al., 2018 ) DenseNet DenseNet-169 Ensemble Accuracy Yes Cross-entropy Nadam GTX 1080Ti 

FAST-NU-DS ( Khan and Tahir, 2018 ) GF + Majority voting(LR, 

RF, ETC) 

N/A Ensemble Accuracy-Speed No - GD Tesla K80 

NOAT ( Steiner et al., 2018 ) Global feature + CNN N/A Combined 

feature 

Speed No Cosine distance - - 

RUNE ( Borgli et al., 2018 ) DenseNet DenseNet-169 General Accuracy Yes Cross-entropy SGD GTX 1080Ti 

SIMULA ( Ostroukhova et al., 2018 ) InceptionNet Inception-v3 General Accuracy-Speed Yes Cross-entropy RMSprop GTX 1080Ti 

HKBU ( Ko et al., 2018 ) WDE + CS-NN N/A Cascade Context No - ED Intel 

Quad-Core 

i7 

CIISR ( Meng et al., 2019 ) ResNet + Softmax ResNet-50 General Accuracy-speed Yes Cross-entropy Adam Tesla P4 

Biomedia 2019 Mcdull ( Chang et al., 2019 ) ResNet + SE-ReNeXt + 

Attention-Inceptionv3 

ResNet-34 Feature 

pyramid 

Accuracy-speed Yes Focal loss, 

Cross-entropy 

Adam Tesla P100 

uniaugsburg ( Harzig et al., 2019 ) MobileNet MobileNet-V2, DenseNet-121 General Accuracy-Speed Yes Cross-entropy Adam TITAN XP 

HCMUS ( Hoang et al., 2019 ) ResNet + Faster R-CNN ResNet-101 Feature 

pyramid 

Accuracy Yes Cross-entropy Adam GTX 1080Ti 

DeepBlue ( Luo et al., 2019 ) 10 pre-trained CNN from 

ImageNet 

SE_ResNeXt50, 

SE_ResNeXt101, SENet154, 

DenseNet201, DenseNet161, 

ResNet152, ResNet101, 

ResNet34, InceptionV4 and 

Inception-ResNetV2 

Ensemble Accuracy Yes Cross-entropy SGD RTX 2080 Ti 

8
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ively fewer samples compared to other classes. Their team won 

he Medico 2018 challenge for the classification task. 

ParaNoMundo: Team ParaNoMundo ( Dias and Dias, 2018b ) 

valuated 10 CNN architectures all of which were pre-trained on 

mageNet. Their best model included DenseNet-201 ( Huang et al., 

017 ) and ResNet. On the test dataset, DenseNet-201 outperformed 

esNet by a small margin on F1-score and MCC metrics. However, 

he ResNet model was two times faster than DenseNet-201. 

UMM-SIM: Team UMM-SIM ( Kirkerød et al., 2018 ) used an un- 

upervised context-aware Conditional Generative Adversarial Net- 

ork (CGAN) ( Denton et al., 2016; Goodfellow et al., 2014 ) as 

ata pre-processing step to remove the green corners of the im- 

ge marked by “ScopeGuide” with the probe marking (see some 

mage samples from Figs. 1 and 2 ). They used CGAN to regenerate 

he areas covered by the green area to help model perform better 

n the clean dataset. For the image classification task, they used an 

nception-ResNet-v2 ( Szegedy et al., 2017 ) with softmax classifier. 

AAUITEC: For classifying GI disease and findings, team AAUITEC 

 Taschwer et al., 2018 ) used early fusion and late fusion strategies. 

n the early fusion strategy, they combined GFs and CNN-based 

eatures, and for the late fusion strategy, they applied soft vot- 

ng for combining the output of multiple classifiers. Their approach 

hat resulted in their top score out of five runs was the combina- 

ion of GFs extracted using LIRE ( Lux and Chatzichristofis, 2008 ) 

nd GoogleNet features. With the combined features, linear SVM 

erformed best compared to KSVM, RF, RF-KSVM-LR, and the LR 

lassifiers. 

NOAT: Team NOAT ( Steiner et al., 2018 ) classified the GI images 

n three steps. First, pre-trained DL models were used for the ex- 

raction of features. Then, LIRE was used for indexing these gen- 

rated features. In the final step, the team searched for the index 

f the most similar images using a cosine distance function. Out 

f the four submitted runs, they achieved the best results with the 

nteger features using bit sampling and a hashing technique. 

S@M: Team S@M ( Thambawita et al., 2018 ) made a comprehen- 

ive evaluation by using a ML-based approach to DL based solution 

or the multi-class classification of GI tract findings. For the ML- 

ased solution, the extracted GFs were passed through a simple 

ogistic classifier and a LMT classifier. They performed an exten- 

ive study by using different pre-trained models and combinations 

f the pre-trained models. Their best model was the combination 

f ResNet-152 and DenseNet-161 along with the additional multi- 

ayer perceptron for the classification of the provided 16 classes. 

heir team held the second position in the classification task. 

LesCats: Team LesCats ( Hicks et al., 2018 ) hypothesized that 

re-training the models with a medical dataset could outper- 

orm models pre-trained on ImageNet ( Deng et al., 2009 ) for the 

rovided dataset. Out of the submitted models, they found that 

 DenseNet-169 pre-trained on ImageNet performed best. They 

ound that the large and diverse datasets were better to pre-train 

n rather than smaller datasets, even if they were similar to the 

arget domain. 

RUNE: Team RUNE ( Borgli et al., 2018 ) approached the task 

ith a specific focus on automatic hyperparameter optimization 

nd data pre-processing. They used Bayesian optimization for op- 

imizing their pre-trained CNN model. As a pre-processing step, 

hey added extra images to the “out-of-patient” class and also per- 

ormed a split on the “esophagitis” class into lower and upper. 

he classes, “esophagitis” and “z-line”, would often be confused, 

o this split was meant to improve their classification performance 

y making the image distribution space smaller for the esophagitis 

lass. They achieved the best results with DenseNet-169, standard 

radient descent optimizer, and a delimiting layer of 0. 

SIMULA: Team SIMULA ( Ostroukhova et al., 2018 ) presented a 

ethod proposed by the organizer team. Their main motivation to 

pproach the task was to provide a baseline for method compari- 
9 
on. They used the Inception-v3 model pre-trained on ImageNet. 

o address the imbalanced dataset, they added randomly dupli- 

ated images to the classes with fewer image samples. Their best 

odel was the one trained using the balanced training set and a 

on-prioritized classifier. 

HKBU: Team HKBU ( Ko et al., 2018 ) approached the task with 

 particular focus on dimensionality reduction. They used a two- 

tage learning strategy, which first performs the weighted discrim- 

nant embedding (WDE) to project the original data to a low- 

imensional feature subspace and then utilizes the cost-sensitive 

earest neighbor (CS-NN) method in the learned subspace for dis- 

ase prediction. 

.3. Methods used in BioMedia 2019 

There were five participating teams in the BioMedia 2019. The 

ethods of each participating team are summarized below. 

CIISR: Team CIISR ( Meng et al., 2019 ) participated in the clas- 

ification task for which they used data enhancement techniques 

o address the class imbalance problem. Augmentation techniques, 

uch as flipping, rotation, cropping, and color change were used. 

heir best performing model used ResNet-50 that was pre-trained 

n ImageNet with a softmax classifier. 

Mcdull: The core idea of team Mcdull ( Chang et al., 2019 ) was

earning different f eature representations for multi-label images 

sing CNN-based models. The team only participated in the classi- 

cation task. They experimented with a variety of different models, 

ncluding ResNet-34 ( He et al., 2016 ), SE-ReNeXt ( Xie et al., 2017 )

nd attention-Inception-v3 ( Szegedy et al., 2016 ), but found that 

ttention-Inception-v3 achieved the best performance. All models 

ere trained using multi-epoch fusion and adaptive thresholding 

echniques with an automatic data augmentation scheme. 

Uniaugsburg: The main objective of the team Uniaugsburg 

 Harzig et al., 2019 ) was to design an improved approach for en- 

oscopic image classification that could potentially run on mo- 

ile phones and also generate reports based on the findings of 

he algorithm. They participated in all four tasks. For the classi- 

cation task, DenseNet121 ( Huang et al., 2017 ) achieved the best 

esult. For the efficiency task, the team proposed MobileNet-V2 

 Sandler et al., 2018 ) with a width multiplier of 1.0 for an effi-

ient detection model. For the automatic report generation task, 

hey used the same model that was used for the classification task. 

owever, they extended this model with class activation maps 

CAM) ( Zhou et al., 2016 ) to detect the spatial location (one of top-

eft, top-right, bottom-left, bottom-right, or center) for the classi- 

cation. In combination with a per-frame classification, they were 

ble to generate a report consisting of three clinically relevant sec- 

ions (main findings, brief summary, and a detailed summary). 

HCMUS: Team HCMUS ( Hoang et al., 2019 ) used stacked model 

f ResNet-101 ( He et al., 2016 ) pre-trained on the ImageNet 

 Deng et al., 2009 ), and a Faster R-CNN ( Ren et al., 2015 ). For the

lasses having a limited number of training samples, such as in- 

truments class, they cropped the area covered by the disease or 

nstruments and their edges. Consequently, these patches were put 

andomly with affine transformed patches on top of various im- 

ges from the other classes. Such data augmentation techniques 

nhanced their performance for both the classification and local- 

zation of class categories. In order to reduce the confusion be- 

ween various types of abnormalities that appeared in the same 

mage, the team used multiple classifiers, introducing a multi-task 

earning approach. An ablation study revealed the effectiveness of 

his technique and the data augmentation strategy. 

DeepBlue: Team DeepBlue ( Luo et al., 2019 ) used 10-fold cross- 

alidation to train ten different models pre-trained on the Ima- 

eNet dataset leading to ten sub-models. They utilized the data 

ugmentation technique to overcome the class imbalance in the 
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Table 5 

Team performances for 2017 Medico Classification task. 

Reference TP TN FP FN REC SPEC PREC ACC MCC F1 

HKBU ( Liu et al., 2017 ) 2811 26811 1189 1189 0.7027 0.9575 0.7027 0.9256 0.6626 0.7027 

FAST-NU-DS ( Naqvi et al., 2017 ) 3066 27066 934 934 0.7665 0.9666 0.7665 0.9416 0.7331 0.7665 

ITEC-AAU ( Petscharnig et al., 2017 ) 3021 27021 979 979 0.7552 0.9650 0.7552 0.9388 0.7202 0.7552 

SIMULA ( Pogorelov et al., 2017a ) - - - - 0.8260 0.9750 0.8290 0.9570 0.8020 0.8260 

SLC-UMD ( Agrawal et al., 2017 ) 3390 27390 610 610 0.8475 0.9782 0.8475 0.9618 0.8257 0.8475 

Table 6 

Team performance for Medico Efficiency task 2017. Method design is based on the trade-off between the accuracy and speed of each algorithm. 

Reference TP TN FP FN REC SPEC PREC ACC MCC F1 FPS 

HKBU ( Liu et al., 2017 ) 2908 26908 1092 1092 0.7270 0.9610 0.7270 0.9317 0.6946 0.7270 2.2 

FAST-NU-DS ( Naqvi et al., 2017 ) 2981 26981 1019 1019 0.7452 0.9636 0.7452 0.9363 0.7114 0.7452 2.3 

ITEC-AAU ( Petscharnig et al., 2017 ) 3021 27021 979 979 0.7552 0.9650 0.7552 0.9388 0.7202 0.7552 1.4 

SIMULA ( Pogorelov et al., 2017a ) 3248 27248 752 752 0.8120 0.9731 0.9530 0.7851 0.7856 0.7851 46.0 

SLC-UMD ( Agrawal et al., 2017 ) 3390 27390 610 610 0.8475 0.9782 0.8475 0.9618 0.8257 0.8475 1.3 
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hallenge dataset. Each of these models was used to obtain the 

robability of prediction maps, which was then combined and 

sed as data for learning an adaptive ensemble model. They used a 

inear weight, RF, and LightGBM to learn the relationship between 

he new data and the labels. Their ensemble model showed that 

ightGBM produced best MCC. 

. Results 

In this section, we present the results of all 21 participating 

eams over the past three years of our GI endoscopy challenges. 

elow we condense the outcomes of each team’s method. It should 

e noted that only the best scores from the allowed five runs are 

rovided for each task. 

.1. Medico 2017 

All teams participated in classification, and speed task, while 

here was no submission for the hardware tasks, and report task. 

he average MCC value of all five teams for the classification task 

n the provided test dataset was 0.7487, with the score ranging 

rom 0.6626 up to 0.8257. A detailed breakdown of the 2017 chal- 

enge can be found in Tables 5 and 6 . We observe that team SCL-

MD ( Agrawal et al., 2017 ) obtained the best MCC score of 0.8257,

hich is over 16% increment over HKBU ( Liu et al., 2017 ) who

sed Bidirectional Marginal Fisher Analysis (BMFA) features and 

n SVM classifier. Team SIMULA ( Pogorelov et al., 2017a ) achieved 

he second-best MCC score and fastest inference time. Both SCL- 

MD and SIMULA used Inception-v3 model with one additional 

NN model. The high FPS obtained by team SIMULA was due to the 

se of residual networks, in particular ResNet-50, unlike SLC-UMD 

eam who used VGGNet, which has nearly six times the parame- 

ers when compared to ResNet50. A similar trend for the results 

an be seen for the algorithm efficiency task in Table 6 . 

.2. Medico 2018 

The 2018 challenge was similar to the one held in 2017 but had 

n increase of images and classes (14,033 images and 16 classes). 

he average MCC score for the 11 participating teams was 0.8175, 

ith the score ranging from a minimum of 0.5357 to a maximum 

f 0.9398. Tables 7 and 8 presents the detailed results of the 2018 

hallenge. It can be seen that team HCMUS ( Hoang et al., 2018 )

ad increment of 40.3% over team HKBU ( Ko et al., 2018 ) which

sed a combination of Weighted Discriminant Embedding (WDE) 

nd cost-sensitive nearest neighbor (CS-NN) for GI endoscopy im- 

ge classification. Team S@M achieved the second-highest MCC of 
10 
.9397, with only a marginal gap of 0.0 0 01 than the winning team. 

he winning team HCMUS ( Hoang et al., 2019 ) used a combination 

f Residual Neural Network (RNN) and Faster R-CNN to obtain an 

CC score of 0.9398. 

Six teams participated in the algorithm efficiency task. 

able 8 shows the average FPS and classification metrics for the 

est performing run for each of the participating teams. In GI 

ndoscopy, any team with above 45 FPS can be considered to 

ave real-time system building capability. Therefore, methods from 

esCats ( Hicks et al., 2018 ), FAST-NU-DS ( Khan and Tahir, 2018 ),

nd HKBU ( Ko et al., 2018 ) are considered efficient to be used in

 real-time system. However, among these three teams, LesCats 

 Hicks et al., 2018 ) has the best MCC score with a reasonable

peed. Therefore, we consider the method proposed by team 

esCats as the best method for the algorithm efficiency task. To 

chieve this, LesCats used AlexNet ( Krizhevsky et al., 2012 ). 

.3. BioMedia 2019 

The structure of the BioMedia 2019 is similar to that of Medico 

018. A slight change in hardware task was made by introducing 

ocker-based submission (please see Section 1.3.4 for details). A 

etailed breakdown of the 2019 challenge results can be found in 

able 9 , Table 10 , and Table 11 . In the 2019 challenge, the average

CC for all submitted runs was 0.9287, with scores ranging from 

.8542 to 0.9520. All teams participated in the classification task, 

f which team Mcdull ( Chang et al., 2019 ) achieved the best result 

or the classification task. 

Three teams participated in the algorithm efficiency task. An 

PS ≥ 45 can be considered real-time performance. Team DeepBlue 

 Luo et al., 2019 ) achieved highest MCC and near real-time FPS of 

1.51 by utilizing 10 pre-trained ImageNet models and LightGBM. 

nly two teams participated in the automatic report generation 

ask, namely team uniaugsburg and team CIISR. The submitted re- 

orts were manually evaluated by two senior gastroenterologists, 

here the usefulness in a real-world clinical environment and the 

orrectness of the reporting were the most important criteria. 

A defined protocol stated in Section 4.3 as used to assess the 

eport generation task. The submission that was found most use- 

ul and accurate by both clinical experts was by the team uniaugs- 

urg ( Harzig et al., 2019 ). Fig. 4 illustrates the sample of the gener-

ted report by this team for one of the videos (out of 6 videos) for

he automatic report generation task. The report provides a brief 

ummary of the detected findings (frame-level classification) in the 

rovided video and a more detailed summary that includes times- 

amps for each. Furthermore, by using class activation maps of the 

redictions, they also provided an approximate location of where 
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Table 7 

Results of 2018 Medico Classification task ( Pogorelov et al., 2018b ). 

Reference TP TN FP FN REC PREC SPEC ACC MCC F1 

LesCats ( Hicks et al., 2018 ) 513.12 8160.62 33.12 33.12 0.9218 0.9378 0.9959 0.9924 0.9325 0.9236 

RUNE ( Borgli et al., 2018 ) 510.37 8150.87 35.37 35.37 0.8572 0.8708 0.9956 0.9918 0.9280 0.8555 

UMM-SIM ( Kirkerød et al., 2018 ) 501 8148.5 45.25 45.25 0.8433 0.8514 0.9944 0.9896 0.9082 0.8367 

ParaNoMundo ( Dias and Dias, 2018a ) 496.06 8143.56 50.18 50.18 0.8205 0.8414 0.9938 0.9885 0.8983 0.8114 

AAUITEC ( Taschwer et al., 2018 ) 492.06 8139.56 54.18 54.18 0.8673 0.8826 0.9933 0.9876 0.8897 0.8662 

SIMULA ( Ostroukhova et al., 2018 ) 474.18 8121.68 72.06 72.06 0.8236 0.8281 0.9911 0.9835 0.8539 0.8145 

FAST-NU-DS ( Khan and Tahir, 2018 ) 358.75 8006.25 187.5 187.5 0.6203 0.7173 0.9767 0.9570 0.6302 0.5868 

NOAT ( Steiner et al., 2018 ) 314.43 7961.93 231.81 231.81 0.4219 0.5146 0.9717 0.9469 0.5368 0.3913 

HKBU ( Ko et al., 2018 ) 315.31 7962.81 230.93 230.93 0.5005 0.4916 0.9715 0.9471 0.5357 0.4829 

S@M ( Thambawita et al., 2018 ) 516.62 8164.12 29.62 29.62 0.9361 0.9319 0.9963 0.9932 0.9397 0.9297 

HCMUS ( Hoang et al., 2018 ) 516.75 8164.25 29.5 29.5 0.9281 0.9426 0.9963 0.9932 0.9398 0.9342 

Table 8 

Results of 2018 Medico Efficiency task ( Pogorelov et al., 2018b ). Method design is based on the trade-off between the accuracy and speed of each algorithm. 

Reference TP TN FP FN REC PREC SPEC ACC MCC F1 FPS 

LesCats ( Hicks et al., 2018 ) 498.68 8146.18 47.56 47.56 0.8986 0.8993 0.9941 0.9891 0.9035 0.8883 624.24 

ParaNoMundo ( Dias and Dias, 2018a ) 495.25 8142.75 51 51 0.8194 0.8379 0.9937 0.9883 0.8965 0.8096 8.61 

FAST-NU-DS ( Khan and Tahir, 2018 ) 454.43 8101.93 91.81 91.81 0.7527 0.8160 0.9888 0.9789 0.8132 0.7522 43328.71 

HKBU ( Ko et al., 2018 ) 315.31 7962.81 230.93 230.93 0.5005 0.4916 0.9715 0.9471 0.5357 0.4829 3744.38 

HCMUS ( Hoang et al., 2018 ) 516.75 8164.25 29.5 29.5 0.9281 0.9426 0.9963 0.9932 0.9398 0.9342 23.14 

Table 9 

Result of the BioMedia challenge 2019 Classification task ( Hicks et al., 2019a ). 

Reference TP TN FP FN PREC REC SPEC ACC MCC F1 

CIISR ( Meng et al., 2019 ) 7570 129888 1167 1167 0.8664 0.8664 0.9911 0.9833 0.8542 0.8664 

DeepBlue ( Luo et al., 2019 ) 8329 130647 408 408 0.9533 0.9533 0.9969 0.9941 0.9480 0.9533 

HCMUS ( Hoang et al., 2019 ) 8269 130587 468 468 0.9464 0.9464 0.9964 0.9933 0.9406 0.9464 

Mcdull ( Chang et al., 2019 ) 8360 130678 377 377 0.9569 0.9569 0.9971 0.9946 0.9520 0.9569 

uniaugsburg ( Harzig et al., 2019 ) 8291 130609 446 446 0.9490 0.9490 0.9966 0.9936 0.9490 0.9105 

Table 10 

Results of BioMedia challenge 2019 Algorithm Efficiency task ( Hicks et al., 2019a ). Method design is based on the trade-off between the accuracy and 

speed of each algorithm. 

Reference TP TN FP FN PREC REC SPEC ACC MCC F1 FPS 

DeepBlue ( Luo et al., 2019 ) 8270 130588 467 467 0.9465 0.9465 0.9964 0.9933 0.9406 0.9465 41.51 

HCMUS ( Hoang et al., 2019 ) 8269 130587 468 468 0.9464 0.9464 0.9964 0.9933 0.9406 0.9464 3.61 

uniaugsburg ( Harzig et al., 2019 ) 8108 130426 629 629 0.9280 0.9280 0.9952 0.9910 0.9201 0.9280 3238.87 

Table 11 

Results of BioMedia challenge 2019 Hardware task ( Hicks et al., 2019a ). 

Reference TP TN FP FN PREC REC SPEC ACC MCC F1 FPS 

CIISR ( Meng et al., 2019 ) 7570 129888 1167 1167 0.8664 0.8664 0.9911 0.9833 0.8542 0.8664 98.90 

uniaugsburg ( Harzig et al., 2019 ) 8108 130426 629 629 0.9280 0.9280 0.9952 0.9910 0.9201 0.9280 1271.97 
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he detected finding was located in the frame. For the hardware 

ask, we had only 2 teams in which uniaugsburg ( Harzig et al., 

019 ) obtained the best MCC and FPS (see Table 11 ). 

Fig. 5 shows a plot of the MCC scores presented by each par- 

icipant over the three challenges. When we compare the results 

rom 2017 to the results from 2019, we see an average increase 

f MCC by 18%, and an increase of the best performing MCC by 

2.63%. This improvement highlights the progress achieved toward 

eveloping an automated system in the field of GI endoscopy and 

lso creates a benchmark for similar challenges in the future. 

. Discussions 

We organized the first GI endoscopy challenge that offered 

he largest multi-class dataset for classification and algorithm ef- 

ciency evaluation. Additionally, the automatic report generation 

ask was also an initiative to reduce the endoscopist burden and 

inimize operator dependence. Below, we provide detailed discus- 
11 
ions on findings and limitations of our 2017, 2018 and 2019 chal- 

enges. 

.1. Challenge methods 

Table 4 presents the summary of different approaches used 

n all three challenges. To better understand these methods we 

ategorized each method based on their nature (cascaded net- 

orks, general CNN models, ensemble models, combined feature 

pproaches, and feature pyramid models) and basis-of-choice that 

ncluded speed, accuracy, and context choices. Below we provide 

nsight on methods capability for some of the best methods used 

n these challenges. 

For 2017 challenge ( Tables 5 and 6 ), two teams used classical 

L approach while the three (out of five) teams explored CNN 

ased approach. Ensemble method designed by the team SLC-UMD 

Inception-V3 ( Szegedy et al., 2015 ) and VGGNet ( Simonyan and 

isserman, 2014 )) and the combined feature approach used by 

he team SIMULA secured the best results on the final MCC met- 
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Fig. 4. Generated report for polyp resection, bleeding videos from automatic report 

generation task. 
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ic for classification (0.8257 and 0.8020, respectively). This im- 

rovement was nearly 10% more than the other general CNN- 

ased method (e.g., team ITEC-AAU). Similarly, ensemble of com- 

ined feature approaches also made a mark on the score chart 

n 2018 and 2019 challenges (see Tables 7 and 9 ). Team HCMUS 

hat used a box regression network together with the feature ex- 

raction network won the challenge in 2018, while team Mcdull 

on the 2019 challenge where they fused several network back- 

ones and implemented a attention mechanism with Inception- 

3 architecture. These results demonstrate that while ensemble or 

used feature-based methods resulted in improved performances, 

he choice of each network in these methods affect the algorithm 

erformance, reliability and usability. For example, the choice of 

nception-v3 and VGGNet by SLC-UMD limits the depth of fea- 

ure extraction and risk of vanishing gradient problem. Addition- 
ig. 5. MCC score comparison of different participating teams in Medico 2017, Medico 20

he right statistics of each year submission (box plot). 

12 
lly, VGGNet has extremely high number of trainable parameters 

e.g., VGG-16 ( Simonyan and Zisserman, 2014 ) has roughly 138 mil- 

ion) compared to the ResNet-50 counterpart (only 23 million). 

learly, in this context, the approach taken by SIMULA team has 

ore strength where they exploited ResNet-50 that includes fea- 

ure fusion through skip-connection and less number of trainable 

arameters compared to VGGNet. Table 6 for algorithm efficiency 

ask also demonstrates this case where the computational speed is 

argely compromised in the method presented by SLC-UMD (FPS of 

.3 only) compared to near real-time speed for team SIMULA with 

PS of 46.0. 

Most methods that topped the evaluation chart for 2018 and 

019 used ensemble or feature fusion networks. Similar to 2017, 

he network choices can be seen to be have a direct consequence 

n the applicability issue and model strength. For e.g., the win- 

ing team HCMUS used the detection method for classification 

ask using deeper ResNet-101 ( He et al., 2016 ) model (44.5 mil- 

ion parameters) as backbone and bounding box regressor network 

hich showed serious consequence in compromise in speed (FPS 

f only 23.14) when tested for efficiency task (refer Table 8 ). On 

ontrary, LesCats which used DenseNet-169 ( Huang et al., 2017 ) 

14.3 million) with fewer parameters than ResNet models and em- 

odied skip-connections without fusion has a clear advantage in 

erms of trade-off between computation speed and accuracy. It 

an be observed in Table 8 that the MCC for team LesCats is 

.9035 at FPS of 624.24 compared to MCC of 0.9398 with just 

ver 23 FPS for HCMUS. The choice of method by LesCats has 

learly more strength and provided a promise for real-time clinical 

pplicability. 

Again, for 2019 ( Table 9–11 ), the model choice as well as the 

PU choices ( Table 4 ) directly implicated the strength of each 

esigned method and its clinical applicability such as speed. For 

xample, the best performing team on classification task (MCC 

 0.9520) fused several feature extraction backbones including 

esNet and SE-ResNeXt ( Hu et al., 2018 ) and several Inception-V3 

 Szegedy et al., 2015 ) models (24 million parameters) for atten- 

ion mechanism (see Fig. 6 ). The second best method with MCC 

 0.9490 on classification task used MobileNet-V2 ( Howard et al., 

017 ) (6.9 million parameters only) and efficient DenseNet-121 

odel (reduced parameters compared to ResNet). Due to the 

hoice of the models a best trade-off between speed and accuracy 

as observed when tested for algorithm efficiency where the team 

sed only MobileNet-V2. For this task, the team obtained a real- 

ime performance with FPS of 3238.87 at a competitive MCC score 

f 0.9201. While the second best DeepBlue used 10 sub-models 
18, and BioMedia 2019 challenges. On left individual team scores (bar plot), and on 
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Fig. 6. Best architecture in Medico 2018 “classification task” Team Mcdull ( Chang et al., 2019 ). 
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 Fig. 7 ) with 10 cross-fold validation resulting in improved MCC 

core but with a sacrifice in speed achieving FPS of only 41.51. 

For the hardware task (i.e., methods tested on the same NVIDIA 

TX 1080 Ti GPU), uniaugsburg team which used light weight 

odel MobileNet-V2 ( Howard et al., 2017 ) (6.9 million param- 

ters only) provided a real time application strength of FPS of 

271.98 with MCC above 0.92. Similarly, for other teams which 

sed only single model, their accuracy also depended on the model 

hoice itself. For example, team RUNE that used DenseNet-169 

 Huang et al., 2017 ) has nearly 7% improvement over team SIM- 

LA that used Inception-V3 model. Compared to DL methods, all 

lassical ML methods including the teams that utilized ensemble 

r fusion networks (e.g., team Fast-Nu-DS in 2017 and 2018, and 
13 
OAT and HKBU in 2018) resulted in a worse performance even 

hough they provided a promise for real-time application (for e.g., 

eams HKBU and Fast-NU-DS in Table 8 ). There is no surprise that 

o team in 2019 competition used classical ML approaches. It is 

o be noted that other metrics such as precision, recall, specificity 

nd accuracy appear to be proportional to the MCC metric used for 

valuating the methods in these challenges and hence have been 

abulated but not discussed here. 

Even though only two teams participated in our automated re- 

ort generation task, it provided an evidence of the strength of 

utomated methods and their clinical usability for reporting (e.g., 

ocation of disease or anatomy, timestamp in video, % of occur- 

ence of different findings (see Fig. 4 )). While, manual post-analysis 
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Fig. 7. The architecture of the best performing team in Biomedia 2019 challenge (Team DeepBlue ( Luo et al., 2019 )). 
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Fig. 8. Confusion matrix plot of Team S@M ( Thambawita et al., 2020 ). A-P repre- 

sents class labels. 
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f the acquired raw videos is close to impossible, and evidently 

ost recorded procedures are almost never re-visited for retro- 

pective case understanding, our automated report generation task 

emonstrated an utmost feasibility and strength of the deep learn- 

ng methods that can be utilized to obtain clinically valuable au- 

omated reporting and provide a potential for post-analysis of pa- 

ients. However, the reliability of such approaches need to be rig- 

rously studied in the future. 

.2. Challenge outcomes and clinical applicability 

As detailed in the previous section, each method had its 

trengths and weaknesses based on their choice of the approach. A 

ajor outcome of each year’s challenge revealed several interest- 

ng findings, such as the evolution of methods in the classification 

ask, their ability to provide reliable accuracy when evaluated on 

he same machine (robustness test) and their inference speed. In 

able 12 , we ranked each team based on these important criteria. 

hen a longitudinal comparison was done, methods submitted in 

018 and 2019 surpassed those in 2017. Similarly, most top-ranking 

ethods were from 2019. 

In the literature, there are several useful recommenda- 

ions towards developing clinically acceptable CADx systems for 

olonoscopy ( Mori et al., 2017 ) or polyp detection ( Bernal et al.,

017 ). For example, models performing over 64 FPS can be in gen- 

ral considered to provide real-time performance, which is very 

ritical in a clinical environment. The clinical applicability of these 

ethods is one important dissection in Table 12 (refer to the last 

olumn), which is based on accuracy (MCC Rank), speed, and ro- 

ustness (RR) ranks. In our ranking, it can be observed that team 

eeepBlue had the best clinical translation capability with 41.51 

PS in speed and 1st and 2nd ranks in the robustness and accu- 

acy, respectively. Similarly, team uniaugsburg from 2019 challenge 

nd team HCMUS from 2018 achieved 2nd rank in our clinical ap- 

licability test. It is to be noted that HCMUS ranked 1st in the ro- 

ustness rank while uniaugsburg ranked 1st in the speed rank and 

nly 3rd in the robustness rank. However, developed methods by 

ll the teams in 2017 have low clinical translation capability. 
14 
.3. Limitations of Medico challenges 

.3.1. Analysis of the failed classes 

In this section, we analyze the results based on performance of 

ach class of the dataset. 

Esophagitis vs normal Z-line . In most of the presented ap- 

roaches in the three challenges, the significant misclassification 

as observed between ‘esophagitis’ and ‘normal-z-line’ classes. In 

ig. 8 , it can be observed that the esophagitis class (B) and the 

ormal-z-line class (C) were the most confused classes. The same 

roblem was observed for all teams ( Hicks et al., 2018; Meng et al., 
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Table 12 

Clinical applicability of the participants methods that considers MCC, efficiency, and speed 

into account. Here Clas. = MCC classification, AR = MCC Algorithm Robustness, RR = 

Robustness-rank, SR = Speed-rank, Rank = MCC Rank, CAR = Clinical applicability rank 

and na = not available. 10 is the imputed rank for speed and robustness ranks. 

Year Team Clas. AR Speed RR SR Rank CAR 

2017 HKBU 0.6626 0.6946 2.2 4 10 18 8 

FAST-NU 0.7331 0.7114 2.3 3 10 16 7 

ITEC-AAU 0.7202 0.7202 1.4 1 10 17 7 

SIMULA 0.8220 0.7856 46 10 2 14 5 

SLC-UMD 0.8257 0.8257 1.3 1 10 15 7 

2018 LesCats 0.9325 0.9035 624 3 1 7 3 

RUNE 0.928 na na na na 8 na 

UMM-SIM 0.9082 na na na na 9 na 

ParaNoMundo 0.8983 0.8965 8.61 1 10 10 4 

AAUITEC 0.8897 na na na na 11 na 

FAST-NU-DS 0.6302 0.8132 43329 10 1 19 7 

NOAT 0.5368 na na na na 20 na 

HKBU 0.5357 0.5357 3744.4 1 1 21 6 

S@M 0.9397 na na na na 6 na 

HCMUS 0.9398 0.9342 23 1 3 5 2 

2019 CIISR 0.8542 0.8542 98.9 1 1 12 3 

DeepBlue 0.948 0.9406 3226 1 1 2 1 

HCMUS 0.9406 0.9406 3.6 1 10 4 4 

Mcdull 0.9520 na na na na 1 na 

uniaugsburg 0.9490 0.9201 1272 3 1 3 2 
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019; Dias and Dias, 2018b; Agrawal et al., 2017 ). One of the rea-

ons is their location as they both exist very close to each other 

see Fig. 9 ). 

Dyed-resection-margins vs dyed-lifted-polyp Other significant 

hallenges were observed in the ‘dyed-resection-margins’ (class E) 

nd ‘dyed-lifted-polyps’ (class D) classes. This is again evident from 

onfusion matrix Fig. 8 . For the Medico test dataset, there were a 

otal of 64 misclassification for these two classes in the method of 

eam S@M ( Thambawita et al., 2020 ). Similar problems were also 

een in other teams performance. The primary reason for misclas- 

ification can be due to similarity between these two classes, for 

xample, in terms of their color properties (see Fig. 1 , first row, 

ourth column, and second-row first column). The other reasons 

ehind the class confusion in both the above cases can be due to 

he model choice, use of simple data augmentation, and choice of 

he loss function. 

.3.2. Limitations of the study 

The curated dataset consisted of green patches that are present 

n the real clinical endoscopy data used for location guidance by 

ndoscopists. However, this may have affected some of the meth- 

ds’ performance due to the confusion of these local patches with 

ther classes that consisted of a similar green patch. Additionally, 

n terms of color and semantic features, some chosen class labels 

ere very similar (e.g., class B - Esophagitis and class C - normal-z- 

ine). There can be presence of label biases due to presence of both 

nstrument class and disease class category as well. As a result, 

he conducted study is susceptible to algorithmic errors due to 
Fig. 9. Example frames from ‘Esophagitis’ and ‘Normal-zline’ class. 
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15 
ataset complexity. Additionally, very similar images were present 

ven though they were taken from different videos. This can create 

seudo data balance due to which algorithms can fail to general- 

ze. Even though we have taken a larger patient cohort, the ability 

f methods to generalize on different endoscopic data or on a dif- 

erent patient cohort can result in unpredictable outcomes. Other 

imitation of our challenges was not having an automated leader- 

oard as a result the prediction maps sent by the teams may be 

ub-optimal and could have error in some metrics especially in in- 

erence time reporting. Similarly, manual scoring of the report gen- 

ration task can be prone to human errors and biases. 

.4. Trust, safety, and interpretability of methods 

With the hardware and software advancements over past years, 

t is evident from the presented challenge series that a significant 

mprovement on reliability of methods is observed over time (see 

ig. 5 ). However, with the case variability it is also vital to incor- 

orate more challenges in the dataset to be addressed. We almost 

oubled data in 2017 in 2018 and 2019 challenges. 

Other important issue is the assessment of methods on real 

linical settings where the negative samples are tremendously 

igher than in the curated data for research and development. Of- 

en patient safety is of direct concern as wrong detection of any le- 

ion can result in wrong procedure. Thus, an assessment of meth- 

ds on real-world clinical scenarios is needed. With the report 

eneration task in 2019, we attempted to address this issue by 

roviding 6 raw videos to the participating teams. Though this at- 

racted only only two participating teams, efficacy and reliability 

f methods were tested. 

Confusion between similar looking samples which are easily 

istinguishable by the human but methods may fail to interpret 

ue to the lack of enough samples in training is a common prob- 

em (e.g., failed cases presented in Section 7.3 ). It is therefore vi- 

al to improve interpretability of the methods by injecting more 

egative samples to improve context-awareness of methods. In all 

hallenges of this series, while most methods were designed to 

egress heavily on the presented features using heavy augmenta- 

ion similar to natural scene domain, a more careful approaches 

ust be built for clinical videos or images, particularly in en- 

oscopy, by preserving both geometric and contextual features dur- 
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ng any transformation strategy. Additionally, including temporal 

wareness (e.g., use of LSTMS ( Xiao et al., 2018 ) for sequences) or

se of metric learning approaches by understanding the embed- 

ing distances (e.g., use of few-shot learning ( Tian et al., 2020 )) 

an be next step forward to improve reliability of methods. Both 

f these were not exploited by any team in these challenges. 

.5. Future steps and strategies 

The three consecutive challenges revealed a progress in method 

evelopment, and competence of teams to achieve improved 

cores. However, the choice-of-methods still depended on fine- 

uning approaches and use of off-the-shelf methods. Almost all 

eams that used DL approaches used pre-trained methods that 

ere trained on natural images (e.g., ImageNet dataset). Only a few 

eam tried to use medical image datasets. A major challenge in the 

edical imaging community is the availability and accessibility of 

arge datasets. As a result, the complex medical features cannot be 

earnt. This becomes more prominent problem when the images 

re merged for multi-class classification as in our case. To this note, 

e have been working immensely on increasing the dataset size 

nd at the same time making it accessible for researchers. Our ef- 

ort has lead to the HyperKvasir ( Borgli, 2020 ), open-access dataset 

hat contains 110,079 images and 373 videos and Kvasir-Capsule, 

n open access video capsule endoscopy dataset that consists of 18 

ideos which can be used for extraction of 4,820,739 image frames 

 Smedsrud et al., 2020 ). While, clinical image data are vague and is

rone to severe distortions when generated using adversarial net- 

orks or performing unrealistic data augmentation, it is vital step 

n overcoming the unreliability of built technologies in this regime. 

A second key strategy that we have learnt from our challenges 

s to provide algorithm performances on different baseline ap- 

roaches so that the teams do not have to try off-the-shelf meth- 

ds by themselves, giving them more time to better design the 

ethods to overcome the limitations of ML approaches on pro- 

ided GI dataset. 

Finally, it is important to address the clinical applicability of 

ach developed method and independently rank teams based on 

heir merit of clinical usability. A metric can be a weighted score 

etween speed, accuracy and robustness. Additionally, the built 

odels can be tested on the real clinical environment for its ac- 

uracy, speed and reliability tests in real-world clinical settings. 

or this we intend to use clinical hardware systems and integrate 

hese models during endoscopy procedures and confirm the relia- 

ility with the clinical expert on both easy and hard cases. 

. Conclusion 

A comprehensive evaluation, comparison, and summarization of 

ifferent presented methods in the MediaEval Medico 2017, Medi- 

Eval Medico 2018, and BioMedia 2019 challenges are presented in 

his paper. Varied methodologies were used: from traditional Ma- 

hine Learning methods based on global features to recent state- 

f-the-art Convolutional Neural Network methods. Several teams 

lso demonstrated the use of specialized data augmentation tech- 

iques. Here, we have provided an overview of several baseline 

ethods using standard computer vision metrics on a common 

ublicly available benchmark dataset. We advocate that using such 

 systematic approach of method evaluation and analysis is neces- 

ary and provides the best practice towards method development 

n GI endoscopy imaging. 

Each year we observed significant improvements in both both 

lassification and algorithm robustness tasks. More importantly, 

he efficiency results of Medico task 2018 and BioMedia 2019 show 

hat it is possible to achieve real-time for GI endoscopy. The auto- 

atic reporting task was one of the first effort to communicate the 
16 
lgorithmic findings with clinical experts. Thus, this study high- 

ighted the significance of collaboration between endoscopists and 

omputer scientists to develop a meaningful medical image analy- 

is tools that can assist endoscopists to reduce their clinical work- 

oad. 

The study also highlighted the need for the collection of larger 

ndoscopic image dataset that incorporates wider class categories, 

nd different modalities. We showed that both objective and sub- 

ective metrics are critical for obtaining insights in the developed 

ethods and their reliability for use in clinical settings. From the 

ifferent submissions, we observed that there is a trade-off be- 

ween speed and accuracy. So, we ranked each team based on 

hese scores and provided an average score determining their clin- 

cal relevance rank. Our analysis showed that teams that achieved 

ne of the highest classification accuracy ranked lower than team 

ith a modest accuracy. 

Further research direction includes investigation on tackling the 

hallenges related to integration of multi-modality, multi-centered 

nd multi-organ data and feedback from endoscopists for devel- 

ping more robust systems. A consensus should be reached to 

mprove understanding and interpretability of the results of CNN 

odels. A potentially optimized combination of them could be 

elpful to build clinically useful method. 
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