
Reliable Server Pooling Based Workload
Offloading with Mobile Edge Computing:
A Proof-of-Concept∗

Thomas Dreibholza, Somnath Mazumdarb

Abstract In recent times, mobile broadband devices have become almost
ubiquitous. However, battery-powered devices (such as smartphones), have
limitations on energy consumption, computation power and storage space.
Cloud computing and Mobile Edge Computing (MEC) can provide low-
latency compute and storage services at the vicinity of the user, MEC in
particular due to the upcoming 5G networks. However, the complexity lies in
how to simply and efficiently realise MEC services, with the auxiliary public
(multi-)cloud resources? In this paper, we propose a proof-of-concept for us-
ing Reliable Server Pooling (RSerPool) as a light-weight layer of managing
resource pools and handling application sessions with these pools. Our ap-
proach is simple, efficient, has low overhead and is available as open source.
Here, we demonstrate the usefulness of our approach by measuring in a test
setup, with a 4G testbed connected to MEC and public multi-cloud resources.
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1 Introduction

The current trend of making large powerful mobile devices (especially smart-
phones) has become increasingly widespread. Interestingly, such devices lack
required computational power as well as proper storage capacity and/or I/O
speed, apart from suffering energy-related issues. Overall, executing complex
applications with large computational/storage requirements can be delegated
to cloud services. It is well-known that latency-tolerant applications are well
suited for cloud services, while latency-sensitive applications are suffering in
the cloud platform.

It is claimed that Mobile Edge Computing (MEC) [1] in upcoming 5G net-
works is a way to solve the latency issues, by providing cloud services in data
centres nearby the mobile user. However, not much work is available on how to
actually realise services for MEC. Reliable Server Pooling (RSerPool) [2,3], is
an IETF standard for a light-weight server pooling approach, which initially
targeted server redundancy in telephone signalling systems. Current existing
literature could be divided into two broad categories. One class of works is
primarily focusing on proposing efficient strategies to optimise the respective
objective functions, such as latency or energy, by using various algorithms or
models, like for instance genetic algorithms [4] and Fuzzy Logic [5], to name a
couple. Another category proposes architectures and frameworks for improv-
ing the QoS via workload offloading. In [6], a model is proposed to reduce
the average response time for mobile users in offloading their workloads to
the cloudlets. The primary components of the framework are the cloudlet,
software-defined network and the cellular network infrastructure. However,
we have not found any testbed-related work based on the Reliable Server
Pooling mechanism.

In this paper, we introduce a simple approach for service offloading
from mobile devices to MEC resources and even public (multi-)cloud re-
sources [7, 8], depending on availability and workload. The goal of our ap-
proach is to combine existing software systems to provide a solution which
meets the following goals: simplicity, efficiency, low-overhead, and open-
source. To achieve this, we combined and adjusted these components: RSP-
LIB [2] for RSerPool-based session handling of MEC services; VNF-based
Evolved Packet Core (EPC) for the 4G/5G network based on OpenAirIn-
terface [9,10]; Open Source MANO [11] for service orchestration of EPC
and MEC systems; and OpenStack for hosting the compute resources for
EPC and RSerPool-based MEC services. We have demonstrated the appli-
cability of our proposed approach by a proof-of-concept in a testbed setup.
Finally, we also have provided some discussions about this ongoing work re-
lated to improving the system.



2 Component Description

In this section, we have provided the required background information of the
components which are primarily responsible for managing and orchestrating
the MEC as well as network-related services.

2.1 Reliable Server Pooling (RSerPool)
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Fig. 1 The RSerPool Architecture

Reliable Server Pooling (RSerPool) [2, 12, 13] was originally motivated by
the need for handling server redundancy in telephone signalling systems.
However, the problem of handling server redundancy is generic and regularly
triggers “reinventing the wheel”. RSerPool is therefore a generic, application-
independent framework. A particular property of it is to be simple and light-
weight, making it suitable also for devices with very limited resources. RSP-
LIB2 [2] is the most widespread open-source implementation of RSerPool.

The RSerPool architecture, as described in detail in [2, 3], is depicted in
Figure 1. In an RSerPool setup, a number of servers, each providing a certain
service, form a pool. Servers of a pool are denoted as Pool Elements (PE).
Within its operation scope, a pool is identified by its unique Pool Handle (PH,
e.g. a string like “Data Analysis Pool”). The handlespace, which is the set
of all pools of an operation scope, is managed by Pool Registrars (PR, also
denoted as registrars). Since a single PR would be a single point of fail-
ure, RSerPool setups should consist of at least two registrars. They syn-
chronise the handlespace by using the Endpoint haNdlespace Redundancy
Protocol (ENRP) [2, 14]. An operation scope is limited to an organisation

2 RSPLIB: https://www.uni-due.de/∼be0001/rserpool/.
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or company. Unlike services like the Domain Name System (DNS), RSerPool
does not intend to scale to the whole Internet. This significantly simplifies the
architecture, making it very light-weight (see also [15]). Nevertheless, pools
can be distributed over large geographic areas [2], to achieve a high resilience
of services, e.g. to keep a service running in case of an earthquake. Servers
can dynamically register to, and deregister from, a pool at a PR of the oper-
ation scope, by using the Aggregate Server Access Protocol (ASAP) [2, 16].
The ASAP connection is also used for monitoring the availability of the PE
by a keep-alive mechanism [12]. Proxy pool elements can connect “legacy”
non-RSerPool servers.

ASAP is also used by clients, denoted as Pool Users (PU) in the context
of RSerPool, to access the resources of a pool. They can query a PR of the
operation scope to select PE(s). This selection is performed by using a pool-
specific pool member selection policy [2,12,17], which is usually just denoted
as pool policy. Examples of pool policies are Round Robin (RR) and Least
Used (LU). ASAP can also be used between PU and PE, then realising a
Session Layer functionality between a PU and a pool. ASAP can then also
support the actual Application Layer protocol to handle failovers and help
with state synchronisation [2, 12]. Proxy pool users can connect “legacy”
non-RSerPool clients to a pool.

2.2 Open Source MANO and the SimulaMet OAI EPC

Network Function Virtualisation (NFV) is a crucial part of 5G networks:
Network functionalities can be realised as Network Services (NS), which are
composed of Virtual Network Functions (VNF). NSs can then be instantiated
as Virtual Machines (VM) in data centres. This allows for a very high flexi-
bility: NSs can dynamically be instantiated when needed and removed when
not needed any more. Furthermore, VNF instances can be scaled as needed.
However, managing and orchestrating NFV is a complex task. An increasingly
popular framework for this purpose is Open Source MANO3 (OSM) [11].
OSM is the orchestration platform from ETSI. It utilises an underlying Net-
work Function Virtualisation Infrastructure (NFVI) for instantiating the Vir-
tual Deployment Units (VDU) as VMs. A commonly used NVFI is Open-
Stack, but OSM supports other frameworks as well.

Based on OSM, we developed a VNF for the Enhanced Packet Core (EPC)
of OpenAirInterface4 (OAI), denoted as SimulaMet OAI VNF5 [9]. In
particular, it can be used to easily realise a tailor-made EPC for custom
4G/5G testbed setups. Our EPC (see also Figure 2) consists of four VDUs [9]:

1. Home Subscriber Server (HSS) is the central database containing the in-
formation about users and their subscriptions. The HSS functionalities

3 Open Source MANO: https://osm.etsi.org.
4 OpenAirInterface: https://www.openairinterface.org.
5 SimulaMet OAI VNF: https://github.com/simula/5gvinni-oai-ns.
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include mobility management, session establishment, user authentication
and access authorisation. It provides its service to the MME via the S6a
interface.

2. Mobility Management Entity (MME) handles the procedures of attaching
and detaching as well as service requests of User Equipment (UE) and
eNodeBs. It communicates with eNodeBs over the S1-C interface (partic-
ularly using SCTP as Transport Layer protocol), with SPGW-C over the
S11 interface, and with HSS over the S6a interface.

3. Control Plane of the Packet Data Network Gateway (SPGW-C) provides
the control part of a combined Serving Gateway (SGW) and Packet Data
Network Gateway (PGW). That is, OAI combines SGW and PGW, but
uses Control and User Plane Separation (CUPS). The SPGW-C handles
control requests from the MME via the S11 interface, and communication
with the SPGW-U via the SXab interface.

4. User Plane of the Packet Data Network Gateway (SPGW-U) handles the
forwarding of user traffic between the Public Data Network (PDN) at the
SGi interface (i.e. usually the public Internet) and the eNodeB over the
S1-U interface. User traffic between eNodeB and SPGW-U is tunnelled
via GPRS Tunnelling Protocol (GTP). The setup of user traffic tunnels is
controlled by the SPGW-C over the SXab interface.

The configuration flexibility of our VNF can be utilised easily by using NSs,
e.g. by adding MEC resources. We will explain the details next in Section 3.

3 Proposed Approach

UE 
resources

MEC resources

UE 
resources

UE 
resources

Ju
ju

co
nt

ai
ne

rs MME HSS

SPGW-
C

SPGW-
U

SimulaMet EPC NS

Public
(Multi-)Clouds

Additional 
Resources

Internet

PDN
OpenStack

Cluster

eNodeBs

S1-U

S1-C

SGI

SPGW-U SPGW-CEPC

SXab

S11

S6a

HSSMME

Open source
MANO

Fig. 2 Testbed Setup with EPC, Open Source MANO and Mobile Edge Computing



Here, we are going to explain our approach to handle the workload of-
floading challenge. The basic scenario is illustrated in Figure 2: the UEs run
a certain application, which is demanding when it comes to computation
and/or storage. They have very limited resources. MEC resources to support
this application are available nearby the user. Furthermore, it may also be
possible to have additional resources in public (multi-)clouds [7,8] somewhere
in the Internet. Application examples for workload offloading could be:

• Processing measurement data recorded by the UE, e.g. to apply computat-
ion-intensive Machine Learning (ML) algorithms on specialised hardware;

• Performing post-processing and advanced compression of real-time recor-
ded video/audio data as well as storage for further usage by the UE;

• Mining crypto currency for payment of other services, e.g. for allowing the
user to read pay-per-view articles of an online journal or newspaper.
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Fig. 3 RSerPool with Mobile Edge Computing and Public (Multi-)Cloud Resources

Our approach to apply RSerPool is illustrated in Figure 3. The resources
are added into a pool, here identified by its PH “Processing Pool”. That is,
the servers in the MEC, and possibly also auxiliary servers in a public (multi-
)cloud, become PEs of this pool. From the implementation perspective, it is
easy to also start a server instance on the UE itself if the application allows
this, due to resource constraints. RSerPool itself is very light-weight, which
means it will not add a large management overhead [2, 15]. The PE on the
UE would then be part of the pool too. If everything else fails, for instance
due to loss of network coverage, it would allow to run the application on the
UE device, albeit with reduced performance. The PU-side of the application
then just needs to pick a suitable PE from the pool (or even use multiple PEs



in parallel) to use their service. The choice of a suitable PE is, as described
in Subsection 2.1, the goal of the pool policy. It is important to use the right
pool policy here, so that the following goals are achieved:

1. Only use the PE on the UE if there is no other choice, e.g. no network
coverage or MEC/public (multi-)cloud resources available.

2. Use public (multi-)cloud resources only when they are a suitable choice,
e.g. when the MEC resources are highly utilised.

3. Otherwise, use the MEC resources.
4. Apply load balancing.

Least Used (LU) [2, 17] select the PE p where its load Lp is lowest, and
round robin or random among PEs with the same lowest load. It will therefore
not differentiate between MEC, public (multi-)cloud and UE resources, i.e.
not satisfying the first 3 goals. Priority Least Used (PLU) [2] adds a PE-
specific load increment constant Ip to LU. That is, PEs are chosen based on
the lowest sum Lp + Ip. Setting IpMEC < IpPMC for all MEC PEs pMEC and
public (multi-)cloud PEs pPMC, as well as IpUE

=100% for the UE PE. This
PLU pool policy setting achieves our goals as described above.

Finally, PRs are needed to manage the handlespace. Clearly, at least one
PR needs to run within the core network (e.g. as part of the MEC setup).
Another PR can run locally to the additional PEs in the public (multi-)cloud.
To allow the UE to run a local PE without network coverage, the UE would
need to run its own PR instance. It is light-weight, i.e. having only low
memory and CPU requirements, as well.

4 Testbed Description

For our proof-of-concept evaluation in Section 5, we made the following setup:
OSM is running “Release EIGHT” in a dedicated VM, connected to an Open-
Stack setup as NFVI. An NS using the SimulaMet OAI VNF is deployed
by OSM in the NFVI. This NFVI is also used for the MEC resources. The
User Equipment (UE) is a regular PC. Another regular PC is used as eN-
odeB. It is running the eNodeB software from OAI, stable version 1.2.2. As
Software-Defined Radio (SDR) board, an Ettus B210 connected via USB 3.1
is engaged.

As application, the CalcAppProtocol model from [2, Section 8.3] [12]
– and provided as part of RSPLIB [2] – is used: a PE has a given request
handling capacity given in the abstract unit of calculations/s. An arbitrary
application-specific metric for capacity may be mapped to this definition, e.g.
CPU operations, processing steps, disk space usage, etc. Each request has a
request size, which is the number of calculations consumed by the processing
of the request. A PE can process multiple requests simultaneously, following
the multi-tasking principle. The user-side performance metric is the handling
speed. The total time for handling a request dHandling is defined as the sum
of queuing time, start-up time (dequeuing until reception of acceptance ac-



knowledgement) and processing time (acceptance until finish). The handling

speed (in calculations/s) is defined as: HandlingSpeed = RequestSize
dHandling

.

In our setup at SimulaMet in Oslo, Norway, we use:

• n PU instances may run on the UE. Each PE generates requests with
an average size of 1,000,000 calculations at an average frequency of 10 s
(negative exponential distribution for both).

• There is 1 PE on the UE, with a capacity of only 200,000 calculations/s.
• 2 PEs are deployed as MEC resources in OpenStack, each with a capacity

of 1,000,000 calculations/s.
• In total, 4 PEs as public multi-cloud resources are deployed, each with a

capacity of 1,000,000 calculations/s. These PEs are distributed as multi-
cloud using the NorNet Core [18, 19] infrastructure, with each one PE
in Longyearbyen, Gjøvik, Tromsø (all Norway) and Haikou (China). That
is, there are significant delay differences (see also [20] for details), between
around 20 ms within Norway, and more than 300 ms between Norway and
China.

• PEs accept up to 4 requests in parallel. When fully loaded, further requests
get rejected, and a new PE has to be selected.

• 1 PR on the UE, 1 PR in the MEC cloud, and 1 PR in Stavanger, Norway.

5 Proof-of-Concept Evaluation

Fig. 4 Used Capacity (in Calculations) of each PE

For our proof-of-concept setup, we have chosen the PLU policy (see Sec-
tion 3) with IPU=100%, IMEC=10% and IPMC=50%. That is, MEC PEs
should be preferred, unless highly loaded. Then, PMC PEs should be used
instead. The PE on the UE itself should only be used in case of severe overload
(or loss of network connectivity). Each measurement run has been repeated
5 times, with a measurement duration of 300 s. The results show the average
of these runs, together with absolute minimum and maximum (thin error
bars) as well as 10% and 90% quantiles (thick error bars).



The results for the used capacity on the PEs when increasing the number
of PU instances on the UE from 1 to 64 are shown in Figure 4. As expected,
under low load, mostly the MEC resources are used (green curves). 1 PU
generating requests of 1,000,000 calculations every 10 s utilises the pool of
6 PEs (2×MEC+4×PMC, providing 1,000,000 calculations/s per PE) only by
around 1.67% on average. It is clearly visible that only the MEC PEs are used.
For 16 PUs, the average pool load is already 26.7%. Then, when sometimes a
MEC PE already handles 2 or 3 simultaneous requests, it becomes reasonable
to use a PMC PE instead. The pool load increases to around 53.3% for
32 PUs, then leading to an increased usage of the 4 PMC PEs. 48 PUs mean
80% average utilisation, while 64 PUs are overload at around 107%.
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Fig. 5 Queuing Time, Start-up Time and Processing Time

Table 1 Average Per-PU Total Queuing Time

Pool Users Qmean Qmin Qmax QQ10 QQ90

1 37.51 3.79 106.98 4.16 88.29
2 9.88 1.11 39.18 2.68 17.95
4 9.50 0.42 26.44 0.90 21.98
8 10.32 0.64 29.96 3.88 20.72
16 15.57 0.00 78.19 1.47 33.12
32 31.26 0.00 173.75 4.66 65.87
48 37.90 0.60 341.95 5.97 73.62
64 174.33 1.46 1081.93 27.24 435.95

Figure 1 illustrates the 3 components of the request handling time – queu-
ing, start-up and processing – in detail. Table 1 shows the results for the
queuing time, i.e. the total time requests spent in the PU’s queue during
the measurement time. While it remains low (.38 s) for decent pool loads,
it increases significantly – as expected – when the pool is no longer able to
process the overload (64 PUs, i.e. 107% load). In this case, the UE PE also
gets used.
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The corresponding start-up and processing times are displayed in Figure 6
and Figure 7. As expected, the start-up time remains reasonably constant.
As long as a PE is not completely full (4 simultaneous requests), it can accept
a new request. At 64 PUs, requests get rejected – and another PE selection
adds to the start-up time. The processing time remains at a similar level at
low to medium pool loads. That is, the PLU pool policy works as intended,
realising a load balancing in the pool. Finally, the processing time increases
at high load and overload, when capacity becomes a scarce resource.
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The average handling speed of the pool, as shown in Figure 8, is reasonable
from the user’s perspective, as long as the pool is not overloaded. That is, even



at 48 PUs running on the UE (which itself would only have a PE capacity
of 200,000 calculations/s for all requests when disconnected from the pool!),
the per-PU handling speed is still much more than 218,000 calculations/s.

Hence, our simple proof-of-concept setup achieves the set goals: It is a
simple, light-weight, efficient workload offloading from UE into a MEC+PMC
system.

6 Conclusions and Future Work

There is a growing demand for offloading workload from mobile devices into
(multi-)clouds, because these devices are resource-constrained and battery-
powered. The MEC ecosystem aims at providing low-latency communication
between user device and cloud service instance or compute device, while
using public network services. However, there is a need for a simple, light-
weight solution for maintaining sessions with pools of MEC- and (multi-
)cloud resources. Reliable Server Pooling (RSerPool) is a standard used for
server redundancy and session handling.

In our paper, we propose a simple but efficient approach for using RSerPool
as a solution for the workload offloading issue. It is possible to realise an
application with light-weight management overhead and low configuration
effort by applying useful pool policy configurations. This lightweight property
even offers the possibility to run a server instance on the user device itself, to
provide local processing – within the device’s limits – as a last resort when
everything else fails. We presented a simple proof-of-concept evaluation to
show the effectiveness of our approach.

As part of future work, it is necessary to evaluate our approach in more
detail, in larger setups and different scenarios. It is also useful to integrate the
deployment more tightly into Open Source MANO (OSM), to provide the
pool element and pool registrar functionalities as part of network services.
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