Load Distribution for Mobile Edge
Computing with Reliable Server Pooling*

Thomas Dreibholz?, Somnath Mazumdar®

Abstract The energy-efficient computing model is a popular choice for both,
high-performance and throughput-oriented computing ecosystems. Mobile
(computing) devices are becoming increasingly ubiquitous to our comput-
ing domain, but with limited resources (true both for computation as well
as for energy). Hence, workload offloading from resource-constrained mobile
devices to the edge and maybe later to the cloud become necessary as well
as useful. Thanks to the persistent technical breakthroughs in global wire-
less standards (or in mobile networks), together with the almost limitless
amount of resources in public cloud platforms, workload offloading is possi-
ble and cheaper. In such scenarios, Mobile Edge Computing (MEC) resources
could be provisioned in proximity to the users for supporting latency-sensitive
applications. Here, two relevant problems could be: i) How to distribute work-
load to the resource pools of MEC as well as public (multi-)clouds?) How
to manage such resource pools effectively? To answer these problems in this
paper, we examine the performance of our proposed approach using the Re-
liable Server Pooling (RSerPool) framework in more detail. We also have
outlined the resource pool management policies to effectively use RSerPool
for workload offloading from mobile devices into the cloud/MEC ecosystem.

2Simula Metropolitan Centre for Digital Engineering

c/o OsloMet — storbyuniversitetet

Pilestredet 52, 0167 Oslo, Norway

dreibh@simula.no

https://orcid.org/0000-0002-8759-5603

bDepartment of Digitalization, Copenhagen Business School
Howitzvej 60, 2000 Frederiksberg, Denmark
sma.digi@cbs.dk

https://orcid.org/0000-0002-1751-2569

* This work has partly been supported by the 5G-VINNI project (grant no. 815279
within the H2020-ICT-17-2017 research and innovation program) and also partly by
the Research Council of Norway (under project number 208798 /F50).

The authors would like to thank Ann Edith Wulff Armitstead for her comments.

mailto:Thomas Dreibholz <dreibh@simula.no>
https://orcid.org/0000-0002-8759-5603
mailto:Somnath~Mazumdar <sma.digi@cbs.dk>
https://orcid.org/0000-0002-1751-2569

2 T. Dreibholz and S. Mazumdar

1 Introduction

Mobile devices are becoming an indispensable part of our daily life. Such
devices are used for a large list of Internet-based activities (such as finan-
cial transactions, online conferencing, route navigation, Internet browsing,
text/video messaging, and online gaming). These modern devices (including
smart phones) are denoted as User Equipment (UE). Recent UEs have de-
cent computational as well as storage capabilities. In some scenarios, they
are limited by the steadily increasing amount of user data and computation
demand. In such events, cloud computing become a viable solution to offload
tasks that require large computation power and storage. Apart from that,
the pay-as-you-go pricing model also offers cloud services at cheaper costs
than overall on-premise clusters management. However, cloud platforms do
not offer low latency between UEs, which may impact latency-sensitive ap-
plications performance. To counter such performance-related issues, Mobile
Edge Computing (MEC) is becoming popular, thanks to the progress in the
mobile network ecosystem. MEC can be placed between the cloud and the
user, while resourcefully supported by the cloud.

MEC could be seen as a small subset of the cloud. Managing such ge-
ographically distributed resource pools without adding a large amount of
management overhead is not easy. To date, MEC is not mature enough,
thus offloading applications to MEC efficiently is not a trivial matter. In
this work, we did not aim for a task offload solution where we add multi-
ple abstraction layers and try to find the almost perfect mapping of tasks
to resources. Instead, our proposed solution was inspired by the “Keep It
Simple, Stupid” (KISS) approach, where we reuse the existing, lightweight
Reliable Server Pooling (RSerPool) framework [1,2]. In addition to that, we
have adapted server selection policies by incorporating the structure of the
MEC.

In our previous work [3], we already presented how RSerPool manages re-
source pools and also how it handles the application sessions effectively. Now,
as an extension of the work, in this paper, we examine the use of different
server selection policies in more detail (over a large parameter range). We
conducted the performance evaluation of resource selection policies, using
simulations of a MEC and (multi-)cloud setup with the RSerPool Simula-
tion (RSPSIM) [2] model. We provided insights into how the proper choice
and configuration of pool member selection policies could result in good per-
formance. We also believe such a setup realistically resembles the serverless
computing setups.

The rest of the paper is structured as follows: we first introduce RSerPool
in Section 2. Then, we describe our approach in Section 3, followed by the de-
scription of our simulation setup and result in Section 4. Finally, we conclude
our paper in Section 5.

Load Distribution for Mobile Edge Computing with Reliable Server Pooling 3

2 Reliable Server Pooling (RSerPool)

The management of server pools, as well as sessions (between clients and
server pools) is a traditional problem in computer networking. To avoid
“reinventing the wheel” for each application, the Internet Engineering Task
Force (IETF) founded the Reliable Server Pooling (RSerPool) [1] working
group to develop a generic standard. Therefore, RSerPool is an application-
independent and open-source framework, with the goals of being simple and
lightweight. RSerPool is also suitable for devices with very limited resources,
which is ideal for MEC environments. RSPLIB? [2, Chapter 5] is the most
widespread open-source implementation of RSerPool. Apart from that, a sim-
ulation model RSPSIM? [2, Chapter 6] has also been developed.

Offloading Pool

ASAP,

ENRP
| N
4
Application Protocol
\—" ‘—’f
T el re
ASAP” L%, LN LN

Registrars

Pool Users

Fig. 1: Illustration of the Reliable Server Pooling (RSerPool) Architecture

Figure 1 illustrates the RSerPool architecture. A resource pool constitutes
a set of servers, providing a certain service. Servers in a pool are denoted as
Pool Elements (PE). A pool is identified by its unique Pool Handle (PH, e.g.
a string like “Offloading Pool”) within its operation scope. The handlespace
is the set of all pools of an operation scope. It is managed by Pool Reg-
istrars (PR, also denoted as Registrars). To avoid a single point of failure,
RSerPool setups should consist of at least two registrars. The PRs synchro-
nise the handlespace by using the Endpoint haNdlespace Redundancy Proto-
col (ENRP) [2, Section 3.10]. An operation scope is limited to an organisation
or company. This means that it does not scale to the whole Internet, in con-
trast to the Domain Name System (DNS). This is a significant simplification,
which keeps RSerPool very lightweight concerning the administrative over-
heads. Pools can be distributed over large geographic areas to achieve a high
resilience of services.

2 RSPLIB: https://www.uni-due.de/~be0001 /rserpool /#Download.
3 RSPSIM: https://www.uni-due.de/~be0001 /rserpool /#Simulation.

https://www.uni-due.de/~be0001/rserpool/#Download
https://www.uni-due.de/~be0001/rserpool/#Simulation

4 T. Dreibholz and S. Mazumdar

PEs use the Aggregate Server Access Protocol (ASAP) [2, Section 3.9] to
dynamically register to, or deregister from, a pool at one of the PRs of their
operation scope. The PR chosen for registration becomes the Home-PR (PR-
H) of the PE. It also monitors the availability of the PE by a keep-alive
mechanism [4]. Clients, which are denoted as Pool Users (PU) in the context
of RSerPool, use ASAP to access the resources of a pool. A PU can query
a PR of the operation scope to select PE(s). This selection is performed by
using a pool-specific pool member selection policy [4], which is usually just
denoted as pool policy (see more details in Subsection 3.2). ASAP may also
be used between PU and PE, then realising a Session Layer functionality
between a PU and a pool. In this case, ASAP can also be used to assist
the actual Application Layer protocol to handle failovers and help with state
synchronisation [4].

3 Our Proposed Offloading Approach

In this section, we are explaining our offloading approach in two parts. The
first part is primarily focused on setting up the RSerPool (refer to Subsec-
tion 3.1). Next, we will discuss the server pool member selection policies for
our MEC setup (refer to Subsection 3.2).

3.1 Setting up Basic RSerPool

eNodeBs
PDN EPC SPGW-C
@ L Internet Enhanced Packet Core (EPC)
Offloading Pool
Additional \
Resources \ g:g g:g
Public
(Multi-)Clouds

Fig. 2: Application Scenario with MEC and Public (Multi)-Clouds (PMCs)

Figure 2 shows the basic MEC scenario [3,5]. Here, UEs are running appli-
cations, which aim at offloading tasks to the cloud instead of using the scarce
and battery-powered UE resources. Particularly, this could be a serverless
computing setup, where the application pushes a certain task for processing
into the cloud. The cloud can instantiate an application-specific container
that runs the assigned task and frees up the container after execution. That

Load Distribution for Mobile Edge Computing with Reliable Server Pooling 5

is, the compute node is stateless, which allows for high flexibility of workload
offloading for different application types. Cloud resources are provided by the
local MEC, as well as by cheaper public (multi)-clouds (PMC). Particularly,
it is from a cost-perspective an advantage to use PMCs, which are in vicinity
to the user. Distant cloud resources offer a high round trip time (RTT), as
distance adds network latency to the service request handling. Therefore, the
local MEC resource is (if available) preferred. So, now the questions could
arise: how to manage such server pools, consisting of MEC as well as PMC
resources?

UE
el MEC Resource .
[u]u] Pool
ool (el
oo
Registrar Registrar

Offloading Pool

Fig. 3: RSerPool with Mobile Edge Computing and (Multi-)Cloud Resources

In Figure 3, we describe our approach [3,5] to applying RSerPool. Re-
sources are added into a pool, identified by its PH (here: “Offloading Pool”),
which means the pool consists of PEs in the MEC as well as in a PMC
setup. Since the original purpose of RSerPool is high availability, it may be
straightforward to also run a PE instance on the UE itself. RSerPool is also
lightweight, which means it has a very small management overhead. With
RSerPool, it is also possible to add the UE resources to the pool. If every-
thing fails, then the application on the UE is still able to “offload” a task to
itself (i.e. the PE on the UE). This would be the case when there is no net-
work coverage, which is not so unlikely for a mobile usage scenario. In such
events, the application may still provide a useful service for its user with
reduced performance and also with increased energy consumption. However,
MEC or PMC resources are always preferable in these scenarios.

Overall, the pool consists of three different types of resources: MEC,
PMCs, as well as UE resources. In addition, PRs are needed for manag-
ing the handlespace. To avoid a single point of failure, it needs to be at least
two, e.g. one for MEC and another for PMCs. For standalone operations in
case of loss of network coverage, also a PR instance needs to run on the UE
itself. This is possible, since PRs are lightweight, meaning they have only low
memory and CPU requirements. Now, in this case, the relevant question is:
how can the PRs finally handle the different resource types in the pool?

6

T. Dreibholz and S. Mazumdar

3.2 Pool Member Selection Policies for MEC

The selection of a suitable PE is performed by the pool policy (as described
in Subsection 3.3). In case of our UE/MEC/PMC setup, it has to achieve the
following four goals [3]:

Goal 1: Only use UE resources if there is no other possibility (such as no
network coverage or lack of MEC resources).

Goal 2: Use of PMCs resources only when they are a suitable choice (such
as when the MEC resources are highly utilised).

e Goal 3: Otherwise, use the MEC resources.
e Goal 4: Apply load balancing.

3.3 Policies

Two simple resource allocation algorithms, Random (RAND) and Round
Robin (RR), neither have information about load state nor about resource
type [2, Subsection 3.11.2]. They are used in this work for comparison pur-
poses only. Apart from these two, we also have used different resource allo-
cation policies with load states:

Least Used (LU) [2, Subsection 3.11.3] selects the PE p where its load L,
is lowest. In case of multiple PEs with the same lowest load (e.g. three
PEs with load of 0%), round robin or random selection is applied among
these least-loaded PEs. Therefore, it will not differentiate between MEC,
PMC and UE resources. In other words, it is not able to satisfy the first
three goals mentioned above.

Priority Least Used (PLU) [2, Subsection 8.12.2] adds a PE-specific load
increment constant I, to LU. This means, PEs are chosen based on the
lowest sum L, + I,. Setting I\ ;nc < Ippye for all MEC PEs pyec and
PMCs PEs ppuc, as well as I, =100% for the UE PE. Then, PLU should
achieve our four goals.

Least Used with Distance Penalty Factor (LU-DPF) [2, Subsection 8.10.2]
adds a PE-specific Distance Penalty Factor (DPF) constant D, to LU.
Then, the PEs are chosen based on the lowest sum

L, +RTT, * D,

where RTT),, is the approximated! Round-Trip Time (RTT) to the PE. For
simplicity, D, can be the same for all PEs, then making it a pool-specific
constant. Assuming

RTTPMEC < RIT

for all MEC PEs pyec and PMCs PEs ppyvc, LU-DPF should achieve
the goals 2 to 4. However, goal 1 is likely to be violated in this case, since

ppMC

4 On PR-H: RTTpr-u<pE; on other PR: RTTprwprr—u + RTTPrR—uoPE-

Load Distribution for Mobile Edge Computing with Reliable Server Pooling 7

RTT),,, may (mostly) be minimal. LU-DPF can therefore be extended to a
new policy Priority Least Used with Distance Penalty Factor (PLU-DPF),
by adding a PE-specific load increment constant I, (as for PLU).

e LU and its variants are adaptive policies, i.e. they require up-to-date load
information from the PEs in the handlespace, which is managed by the
PRs. A PR-H has to be updated with the load states of its PEs (by re-
registration via ASAP). Then, it distributes the updates to the other PRs
(via ENRP). So, propagating load updates takes time, leading to tempo-
rary inaccuracy. The Least Used with Degradation (LUD) [6] policy adds a
load degradation variable X,, for each PE p. Each time a PE is selected by
a PR, it increases the load degradation by the load increment constant I,.
On update from the PE, X, is reset to zero. Then, PEs are chosen based
on the lowest sum L, + X,,. This can be combined with the idea of PLU
to a new policy Priority Least Used with Degradation (PLUD) choosing a
PE by lowest sum of L, + I, + X, and with distance penalty factor to a
new policy Priority Least Used with Degradation and DPF (PLUD-DPF)
selecting a PE by lowest sum of

Ly + I, + X, + RTT, # D,,.

Now, one question arising from these different policies is about their per-
formances: Which policies are useful for our use case, and which policy should
be used for a UE/MEC/PMC setup?

4 Simulation and Results

For our simulation, we use the RSPSIM [2, Chapter 6] model for RSer-
Pool to create a setup as depicted in Figure 3. RSPSIM is based on OM-
NeT++ 6.0prel5 and has been extended to support our new polices (PLUD,
PLU-DPF and PLUD-DPF, see Subsection 3.3).

4.1 Application Description

As application, we use the CALCAPPPROTOCOL model from [2, Section 8.3].
This model is part of RSPSIM, as well as of the RSerPool implementation
RSPLIB, which was used for our initial proof-of-concept real-world measure-
ments in [3]. In CALCAPPPROTOCOL, a PE has a request handling capacity
given in the abstract unit of calculations per second (calculations/s). An
arbitrary application-specific metric for capacity may be mapped to this def-
inition (such as CPU operations, processing steps, disk space usage). Each
request has a request size, which is the number of calculations consumed by
the processing of the request. Following the multi-tasking principle, a PE can
process multiple requests simultaneously. The user-side performance metric
is the handling speed. The total time for handling a request duandiing is de-
fined as the sum of queuing time, start-up time (de-queuing until reception of

8

T. Dreibholz and S. Mazumdar

acceptance acknowledgement) and processing time (acceptance until finish).
The handling speed (in calculations/s) is defined as:

R tSi
HandlingSpeed = Sequestalze.
dHandling

4.2 Stmulation Setup

For our setup as depicted in Figure 3, we use below parameters, unless oth-
erwise stated. For each simulation scenario, 64 runs are performed.

e n PU instances may run on the UE. Each PE generates requests with an

average size of 1,000,000 calculations, at an average interval of 10 seconds
(negative exponential distribution for both).
There is one PE for each PU on the UE side, with a capacity of only
200,000 calculations/s (i.e. n PU instances mean n UE PEs).
Four PEs, each with a capacity of 1,000,000 calculations/s, are deployed
as MEC resources, having a one-way delay between UE and PE within
5 ms and 15 ms (uniform distribution). From testbed experiments [3, 5],
these delays are realistic in local 4G setups.
In total, ten PEs are deployed as PMC resources, each with a capacity of
1,000,000 calculations/s, with one-way delay between UE and PE between
30 ms and 300 ms (uniform distribution), with delays based on Internet
measurements in [7].
Minimum processing speed per PE is 200,000 calculations/s, i.e. PEs in
MEC and PMC accept up to five requests in parallel, while the UE PE
just can run at most a single one. When fully loaded, further requests get
rejected, and a new PE has to be selected.
For policies with load increment:

I

PMEC

=10%, Lypye = 20%, L., = 100%.

e For DPF policies: DPF D,=0.0001 for all PEs.
e One PR in the UE network, one in the MEC cloud, and one in the PMC.

4.3 Pool Member Selection Policy Performance

Our first simulation is examining the general properties of the different pool
policies in our MEC setup (defined in Subsection 4.2). Figure 4 presents
the utilisation of different PEs on UE in MEC as well as in PMC (vertical
direction) for the different pool policies (horizontal direction). On the z-
axis, the number of PUs is varied. Note, that n PUs also means n low-
performance PEs at the UE side (“the more UEs, the more resources on UEs
in total”), while the number of PEs in MEC (4) and PMC (10) remain fixed.

Load Distribution for Mobile Edge Computing with Reliable Server Pooling 9

Random RoundRobin LstUsd LstUsdDeg PrLstUsd PrLstUsdDeg PrLstUsdDPF PrLstUsdDegDPF

an

/_/’—_ |
d d

25 50 75 100

25 50 75 100

Average Utilisation [%]
"
I
!
po= 1]

/ /

/ / /

) s 9
80 8 8 8o g

Number of Foal User Instances [1]

25 50 75 100
T
Ond

[

53
3

1007
1007
150

o
°
e 8 8

150

9 9
o o
o 8 & Bo 8

150

a
o 2 o
o B3 o 3 Bo 3

100
100
150

Fig. 4: Average Utilisation of the three Pool Element types

There is a line for the average utilisation of each PE, which mostly overlap
(explained later). Thick error bars mark the 10%- and 90%-quantiles, together
with grey ribbons for better visibility. Thin error bars show the absolute
minima and maxima. The corresponding average handling speed (as defined
in Subsection 4.2) is shown in Figure 5, again with 10%- and 90%-quantiles
(thick error bars and ribbons) as well as absolute minima and maxima (thin
error bars).

From the utilisation of Random (RAND) and Round Robin (RR) (refer
to Figure 4), it can be observed that all three types of resources, such as
UE, MEC and PMC, are used. Furthermore, the utilisation of UE PEs is
significantly larger than for MEC and PMC. This is due to the fact that a
UE PE only performs one request at a time (due to lower UE performance),
while MEC and PMC PEs can run up to five requests in parallel. This clearly
violates goal 1 of Subsection 3.2, which states that UE resources should not
be used unless there is no other choice. This is confirmed by a low handling
speed (refer to Figure 5). Nevertheless, up to around 20 PUs, there is still a
better performance (>200,000 calculations/s) than running on the UE itself,
in addition to reduced battery consumption on the UE. Least Used (LU)
is not much better, as expected (see Subsection 3.2), so these three policies
(RAND, RR and LU) are not a good choice.

Comparing the utilisation results of LU to the Least Used with Degrada-
tion (LUD), Priority Least Used (PLU) and Priority Least Used with Degra-
dation (PLUD) policies (refer to Figure 4), there is a significant difference:
at low loads, only MEC resources are used (as intended). With the MEC re-
sources utilisation increasing, there is an increase in PMC utilisation as well.
However, MEC is the preferred choice, with higher utilisation than for PMC.
Apart from that, there is no usage of slow, expensive, battery-powered UE
resources, as long as sufficient MEC/PMC resources are available. The useful-

10 T. Dreibholz and S. Mazumdar

Random

=== RoundRobin

= LeastUsed

LeastUsedDeg.

|
== Prio.LeastUsed
s 7\\——‘7 Prio.LeastUsedDeg.

== Prio.LeastUsedDPF

250000 500000 750000

Handling Speed [Calculations/s]

=== Prio.LeastUsedDeg.DPF

150

o o

o 2
Number of Pool User Instances [1]

Fig. 5: Average Request Handling Speed

ness is confirmed by the handling speed (Figure 5), with superior values over
the whole z-axis range. The two variants of policies with degradation (LUD
and PLUD) perform slightly better than plain PLU. Note, that the difference
is subtle: multiple degradations for a PE p may occur before a load update
resets the degradation variable X, to zero, while plain PLU always adds one
fixed load increment. As shown here, the compensation of handlespace load
inaccuracy due to network delay performs slightly better. And, there is an
advantage for PLUD compared to LUD at high loads (here: >130 PUs). On
the utilisation side, the degradation policies show an increased utilisation
variation for higher loads: inaccuracy occurs due to network delay, so there
is a difference between the PEs having low and high PU+PE RTT. Never-
theless, it can easily be seen that LUD, PLU, and particularly PLUD fulfil
all four goals (for goals refer to Subsection 3.2).

Our setup defined in Subsection 4.2 is based on our multi-country Internet
testbed scenario already mentioned in our previous work [3]. Therefore, par-
ticularly the RTT between PU and PMC PEs significantly varies, from ca.
60 ms to ca. 600 ms. With the DPF policy variants PLU-DPF and PLUD-
DPF, the PE choice takes the RTT into account (X,=0.0001). In this case,
the utilisation lines (Figure 4) for the different PEs become distinct, leading
to a significant variation of the 10%- and 90%-quantiles, as intended: nearer
PEs are preferred over far-away PEs with respect to RTT. However, in this
scenario, the effect on the handling speed (Figure 5) is not large, even leading
to a lower performance than PLU, LUD and PLUD for a larger number of
PUs. Such findings could lead to the question whether the DPF policies are
useful at all for a MEC/PMC' scenario?

4.4 Performance with Distance Penalty Factor

We performed simulations for LUD, PLU, PLUD, PLU-DPF and PLUD-
DPF to further examine the usefulness of the DPF policies. Figure 6 presents
the utilisation results for MEC and PMC PEs (vertical direction; UE PEs
omitted, as they are unused, i.e. utilisation at 0%), while Figure 7 presents
the corresponding handling speed results. We varied the number of PUs (hor-

Load Distribution for Mobile Edge Computing with Reliable Server Pooling 11

Q 1 5 25 100
=
2o | =
5. & — LeastUsedDe
Sy | i eas| g.
ﬁ N | == Prio.LeastUsed
=8 :
g =3 == Prio.LeastUsedDeg.
gﬁ == Prio.LeastUsedDPF
g 3 (;; = Prio.LeastUsedDeg.DPF
<y
s o o o ®m o m m mw b m m o w ®w @ w ®» o o
?T 2 2 9 2 92 2 2 2 2 2 39 9 92 2 2 2 3 9 9
3 & & & & o @ 3 @ & & & o 8
= & 8 & 8 2 & ¢ 8 2 & 8 ¢ &

3 & & & & 3
8 & &§ 2 & 8
Average Request Size [Calculations]

Fig. 6: Average Utilisation for varying Request Sizes

o
@ 1 5 25 100
c
Sy |
52 '
38 LeastUsedDeg.
22 — ;
3 2 i = Prio.LeastUsed
o8 [f S ~ Prio.LeastUsedDeg.
23 1 \ — Prio.LeastUsedDPF
'g,% — == Prio.LeastUsedDeg.DPF
£38
k=1
£ w 1B w B 8 B 8 W B w B w W 8 W B W B 8
£ T %2 3T 2 £ % 2 2T £ 3 £ T 2 £ 3T £ 3T 2 g %

2 & 8 & & 2 & 8 & 8 8 2 & 8 8 8

8 2 2 & 8
Average Request Size [Calculations]

Fig. 7: Average Request Handling Speed for varying Request Sizes

izontal direction). On the x-axis, the average request size in calculations is
varied. Note, that we use particularly small requests here, from 50,000 (5e4)
to 500,000 (5e5) calculations, which is small compared to a PE capacity of
1,000,000 (1e6) calculations/s.

A benefit of using PLUD-DPF in comparison to LUD or PLU is visible with
small requests, where the network latency significantly affects the handling
speed performance (Figure 7). This could be the case for real-time cloud
processing of interactive applications (e.g. handling audio/video data) on
the UE. For request sizes of up to 150,000 (le5) calculations, PLUD-DPF
achieves a better handling speed, even with 100 PUs. On the other hand,
PLU-DPF (without degradation) performs worse than PLU, LUD and PLUD,
even with only 25 PUs. Because of the short requests, load information in the
handlespace becomes inaccurate, e.g. a request is already finished when its
increased load state gets propagated to a PR selecting a new PE. So, policies
with degradation are essential for handling inaccurate load information here.

As expected from the handling speed results above, the utilisation of the
MEC PEs (Figure 6) is highest for PLUD-DPF with a large number of PUs.
That is, PLUD-DPF combines the information from DPF and degradation
variable X, to prefer MEC PEs. In summary, PLUD-DPF can provide better
performance than for instance PLUD in scenarios with short requests. How-
ever, the setup has to be configured carefully. For longer-running requests,
LUD, PLU or particularly PLUD will be better and less complicated choices.

12 T. Dreibholz and S. Mazumdar

5 Conclusion and Future Work

Mobile devices are resource-constrained. Serverless computing offers the pos-
sibility to offload tasks into a public cloud platform. But cloud computing
does not offer low latency. To counter the latency issue, another resource level
abstraction has been created known as Mobile Edge Computing (MEC) that
sits in proximity to its users. However, load distribution and the management
of computing resource pools with different resource types is a challenging
task. Our proposed approach is to reuse the lightweight, simple, yet powerful
Reliable Server Pooling (RSerPool) framework to distribute the tasks onto
the resource pool by satisfying four basic goals. It also supports multiple re-
source allocation policies, and we added three new ones: PLUD, PLU-DPF
and PLUD-DPF. We have presented our simulated results and showed that
three policies — LUD, PLU and particularly PLUD — are better for longer-
running requests, while PLUD-DPF achieves a better handling speed for
short requests. As future work, we plan to extend the analysis with real ap-
plications/benchmarks set up in a ¢rue geographically distributed scenario
including OPENAIRINTERFACE-based EPC. We also intend to contribute our
results into the IETF standardisation process of RSerPool, as well as the de-
velopment of orchestration frameworks, particularly OPEN SOURCE MANO.

References

1. Lei, P., Ong, L., Tlxen, M., Dreibholz, T.: An Overview of Reliable Server Pooling
Protocols. Informational RFC 5351, IETF (September 2008)

2. Dreibholz, T.: Reliable Server Pooling — Evaluation, Optimization and Extension
of a Novel IETF Architecture. PhD thesis, University of Duisburg-Essen, Faculty
of Economics, Institute for Computer Science and Business Information Systems
(March 2007)

3. Dreibholz, T., Mazumdar, S.: Reliable Server Pooling Based Workload Offloading
with Mobile Edge Computing: A Proof-of-Concept. In: Proceedings of the 3rd
International Workshop on Recent Advances for Multi-Clouds and Mobile Edge
Computing (M2EC) in conjunction with the 35th International Conference on
Advanced Information Networking and Applications (AINA). Volume 3., Toronto,
Ontario/Canada (May 2021)

4. Dreibholz, T., Rathgeb, E.P.: Overview and Evaluation of the Server Redundancy
and Session Failover Mechanisms in the Reliable Server Pooling Framework. In-
ternational Journal on Advances in Internet Technology (IJAIT) 2(1) (June 2009)

5. Dreibholz, T., Mazumdar, S.: A Demo of Workload Offloading in Mobile Edge
Computing Using the Reliable Server Pooling Framework. In: Proceedings of the
46th IEEE Conference on Local Computer Networks (LCN), Edmonton, Alber-
ta/Canada (October 2021)

6. Zhou, X., Dreibholz, T., Rathgeb, E.P.: A New Server Selection Strategy for Re-
liable Server Pooling in Widely Distributed Environments. In: Proceedings of the
2nd IEEE International Conference on Digital Society (ICDS), Sainte Luce/Mar-
tinique (February 2008)

7. Dreibholz, T.: HiPerConTracer - A Versatile Tool for IP Connectivity Tracing in
Multi-Path Setups. In: Proceedings of the 28th IEEE International Conference on
Software, Telecommunications and Computer Networks (SoftCOM), Hvar, Dal-
macija/Croatia (September 2020)

	Load Distribution for Mobile Edge Computing with Reliable Server Pooling
	Thomas Dreibholza, Somnath Mazumdarb
	Introduction
	Reliable Server Pooling (RSerPool)
	Our Proposed Offloading Approach
	Setting up Basic RSerPool
	Pool Member Selection Policies for MEC
	Policies

	Simulation and Results
	Application Description
	Simulation Setup
	Pool Member Selection Policy Performance
	Performance with Distance Penalty Factor

	Conclusion and Future Work
	References

