
dolfin–adjoint
automatic adjoint models for FEniCS

P. E. Farrell, S. W. Funke, D. A. Ham, M. E. Rognes
Simon@simula.no

The dolfin-adjoint project automatically derives and solves adjoint and tangent linear equations
from high-level mathematical specifications of finite element discretizations of partial differential equations.

About dolfin-adjoint

Adjoint and tangent linear models form the basis of many numerical techniques such as sensitivity analysis, optimization, and

stability analysis. However, the derivation and implementation of adjoint models for nonlinear or time-dependent models are

notoriously challenging: the manual approach is time-consuming and error-prone and traditional automatic differentiation

tools lack robustness and performance.

dolfin-adjoint solves this problem by automatically analyzing the high-level mathematical structure inherent in finite element

methods. It raises the traditional abstraction of algorithmic differentiation from the level of individual floating point operations

to that of whole systems of differential equations. This approach delivers a number of advantages over the previous state-

of-the-art: robust hands-off automation of adjoint model derivation; computational efficiency approaching the theoretical

optimum; and native parallel support inherited from the forward model.

Symbolic forward equations

Symbolic adjoint equations

Symbolic derivation (dolfin-adjoint)

Adjoint code

Forward code
Code generation (FEniCS)

Code generation (FEniCS)

/ Figure: By adding a few lines of code to an

existing FEniCS model, dolfin-adjoint computes

tangent linear and adjoint solutions, gradients

and Hessian actions of arbitrary user-specified

functionals, and uses these derivatives in com-

bination with sophisticated optimization algo-

rithms or to conduct stability analyses

The implementation of dolfin-adjoint is based on the finite-element framework FEniCS. When the user runs a FEniCS

model, dolfin-adjoint records the dependencies and structure of the forward equations. The resulting execution graph

stores a mathematical representation of the forward equations. By reasoning about this graph, dolfin-adjoint can linearize

the equations to derive a symbolic representation of the discrete tangent linear equations, and reverse the propagation of

information to derive the corresponding adjoint equations. By invoking the FEniCS automatic code generator on these

equations, dolfin-adjoint obtains solutions of the tangent linear and adjoint models, and can use these to compute consistent

first and second order functional derivatives. dolfin-adjoint also has preliminary support for the Firedrake project.

How it works
Application examples

Consider the time dependent heat equation

∂u

∂t
− ν∇2u = 0 in Ω× (0, T),

u = g for Ω× {0}.
Here Ω is the Gray’s Klein bottle, a closed 2D manifold embedded in 3D, T is the

final time, u is the unknown temperature, ν is the thermal diffusivity, and g is the

initial temperature.

The goal is to compute the sensitivity of the norm of temperature at the final time

J(u) =

∫
Ω

u(t = T)2

with respect to the initial temperature, that is dJ/dg.

Initial temperature Final temperature Sensitivity

from dolfin import *

from dolfin˙adjoint import *

Solve the forward system

F = u*v*dx - u˙old*v*dx +

dt*nu*inner(grad(v),grad(u))*dx

while t ¡= T:

t += dt

solve(F == 0, u)

Apply dolfin-adjoint

m = Control(g)

J = u**2*dx*dt[T]

dJdm = compute˙gradient(J, m)

H = hessian(J, m)

M
Code: Implementation excerpt (the code includ-

ing the complete forward model has 37 lines)

Sensitivity analysis

This topology optimization example minimizes the compliance∫
Ω

f T + α

∫
Ω

∇a · ∇a,

subject to the Poisson equation with mixed Dirichlet–Neumann con-

ditions

−div(k(a)∇T) = f in Ω,

T = 0 on ∂ΩD,

k(a)∇T = 0 on ∂ΩN,

and additional control constraints∫
Ω

a ≤ V and 0 ≤ a(x) ≤ 1 ∀x ∈ Ω.

Here Ω is the unit square, T is the temperature, a is the control

(a(x) = 1 means material, a(x) = 0 means no material), f is a

source term, k(a) is the Solid Isotropic Material with Penalisation

parameterization, α is a regularization term, and V is the volume

bound on the control. Physically, the problem is to find the material

distribution a that minimizes the integral of the temperature for a

limited amount of conducting material.

from dolfin import *

from dolfin˙adjoint import *

...

J = f*T*dx + alpha*inner(grad(a),grad(a))*dx

m = Control(a)

rf = ReducedFunctional(J, m)

minimize(rf, method=”SLSQP”, bounds=...)

M
Code: Implementation excerpt

(the full code uses the IPOPT

optimization package and has 56

lines)

/ Figure: Optimal material dis-

tribution a for a unit square do-

main and f = 10−2

PDE-constrained optimization

This example performs a generalized stability analysis to find the perturbations to an

initial condition that grow the most over some finite time. The governing equations

are the two-dimensional vorticity-streamfunction formulation of the time-dependent

Navier–Stokes equations, coupled to two advection equations for temperature and

salinity:

∂ζ

∂t
+∇⊥ψ · ∇ζ =

Ra

Pr

(
∂T

∂x
−

1

R0
ρ

∂S

∂x

)
+∇2ζ,

∂T

∂t
+∇⊥ψ · ∇T =

1

Pr
∇2T,

∂S

∂t
+∇⊥ψ · ∇S =

1

Sc
∇2S,

∇2ψ = ζ.

ζ is the vorticity, ψ is the streamfunction, T is the temperature, S is the salinity, and

Ra, Sc, Pr and R0
ρ are parameters. The configuration consists of two well-mixed

layers (i.e., of homogeneous temperature and salinity) separated by an interface.

The instability is activated by a sinusoidal perturbation to the initial salinity field.

from dolfin import *

from dolfin˙adjoint import *

...

gst = compute˙gst(”InitialSalinity”, ”FinalSalinity”, nsv=2)

Initial salinity
Leading initial salinity

perturbation

/ Code: Implementa-

tion excerpt (the full

code uses SLEPc and

has 144 lines)

Leading final salinity

perturbation

Generalized stability analysis

dolfin-adjoint runs naturally in parallel, and inherits the scalability and code optimizations of FEniCS. To verify this, we

benchmarked the sensitivity analysis and generalized stability application examples.

Sensitivity analysis example

CPUs 1 2 4 Optimal

Forward runtime (s) 40.3 19.6 13.2

Adjoint runtime (s) 39.1 19.3 12.5

Adjoint/Forward ratio 0.97 0.99 0.95 1.00

Generalized stability example

CPUs 1 2 Optimal

Forward runtime (s) 92.4 55.0

Adjoint runtime (s) 41.4 25.9

Adjoint/Forward ratio 0.45 0.47 0.5

Tables: The sensitivity analysis example is linear, while the generalized stability analysis example is nonlinear and converges

on average in 2 Newton-iteration per timestep. Hence the adjoint model is expected to be twice as fast as the forward

model.

Performance

The adjoint equations depend on the forward solutions. However, stor-

ing the entire forward trajectory is infeasible for large, time-dependent

simulations. In this case, dolfin-adjoint can employ a binomial check-

pointing strategy via the revolve library. When activated, dolfin-adjoint

automatically saves state checkpoints and uses them to recompute

missing forward states to trade off memory requirements and compu-

tational effort. This allows for solving adjoint equations even for large-

scale simulations. For instance, 390 checkpoints allow simulations with

107 time-steps at a cost of a 3× slow-down.

1 2 3 4 5 6 7 8 9 10

Figure: Visualisation of the optimal checkpoint-

ing strategy with 10 time levels and 3 checkpoints

To benchmark the checkpoint implementation, we used the sensitivity example to compare the additional computational

cost of checkpointing with a store-all strategy in dolfin-adjoint:

Slow-down factor with 11 timesteps and varying memory checkpoints

Theoretical adjoint to forward runtime ratio 5.00 2.18 1.63 1.45 1.00

Observed adjoint to forward runtime ratio 5.07 2.26 1.73 1.53 0.90

Checkpointing

How to get started

http://dolfin-adjoint.org
Contains an introduction to adjoints, documentation, tutorials and instal-

lation instructions for Linux (with Ubuntu packages) and MacOS X.

Downloads
This poster

PDF format

References

dolfin-adjoint.org/citing

Source code

bitbucket.org/dolfin-adjoint

