
Bagadus: An Integrated System for Arena Sports Analytics
– A Soccer Case Study –

Pål Halvorsen1, Simen Sægrov1, Asgeir Mortensen1, David K. C. Kristensen1,
Alexander Eichhorn1, Magnus Stenhaug2, Stian Dahl3, Håkon Kvale Stensland1,

Vamsidhar Reddy Gaddam1, Carsten Griwodz1, Dag Johansen2

1University of Oslo/Simula Research Laboratory 2University of Tromsø 3ZXY Sport Tracking

ABSTRACT

Sports analytics is a growing area of interest, both from a
computer system view to manage the technical challenges
and from a sport performance view to aid the development
of athletes. In this paper, we present Bagadus, a prototype
of a sports analytics application using soccer as a case study.
Bagadus integrates a sensor system, a soccer analytics anno-
tations system and a video processing system using a video
camera array. A prototype is currently installed at Alfheim
Stadium in Norway, and in this paper, we describe how the
system can follow and zoom in on particular player(s). Next,
the system will playout events from the games using stitched
panorama video or camera switching mode and create video
summaries based on queries to the sensor system. Further-
more, we evaluate the system from a systems point of view,
benchmarking different approaches, algorithms and trade-
offs.

Categories and Subject Descriptors

H.5.1 [Multimedia Information Systems]: Video

General Terms

Design, Experimentation

Keywords

System integration, camera array, sensor tracking, video an-
notation, sport analytics, soccer system

1. INTRODUCTION
Today, a large number of (elite) sports clubs spend a large

amount of resources to analyze their game performance, ei-
ther manually or using one of the many existing analytics
tools. In the area of soccer, several systems enable trainers
and coaches to analyze the game play in order to improve
the performance. For instance, Interplay-sports [3] has been
used since 1994. Here, video-streams are manually analyzed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’13, February 26 - March 1, 2013, Oslo, Norway.
Copyright 2013 ACM 978-1-4503-1894-5/13/02 ...$15.00.

and annotated using a soccer ontology classification scheme.
Trained and soccer-skilled operators tag who has the ball,
who made a pass, etc. ProZone [4] is another commonly used
system that automates some of this manual annotation pro-
cess by video-analysis software. In particular, it quantifies
movement patterns and characteristics like speed, velocity
and position of the athletes. In this respect, Di Salvo et
al. [25] conducted an empirical evaluation of deployed Pro-
Zone systems at Old Trafford in Manchester and Reebook
Stadium in Bolton, and concluded that the video camera de-
ployment gives an accurate and valid motion analysis. Sim-
ilarly, STATS SportVU Tracking Technology [5] uses video
cameras to collect the positioning data of the players within
the playing field in real-time. This is further compiled into
player statistics and performance. Camargus [1] provides
a very nice video technology infrastructure, but lacks other
analytics tools. As an alternative to video analysis, which
often is inaccurate and resource hungry, both the Cairo’s
VIS.TRACK [28] and ZXY Sport Tracking [7] systems use
global positioning and radio based systems for capturing per-
formance measurements of athletes. For example, using a
sensor system, ZXY captures a player’s orientation on the
field, position, step frequency and heart rate frequency with
a resolution of samples up to 20 times per second. Then,
these systems can present their statistics, including speed
profiles, accumulated distances, fatigue, fitness graphs and
coverage maps, in many different ways like charts, 3D graph-
ics and animations.

To improve game analytics, video that replays real game
events becomes increasingly important. However, the inte-
gration of the player statistics systems and video systems
still requires a large amount of manual labor, e.g., events
tagged by coaches or other human expert annotators must
be manually extracted from (or marked in) the videos. Fur-
thermore, connecting the player statistics to the video re-
quires manual work. One recent example is the Muihtu sys-
tem [19], which integrates coach annotations with related
video sequences, but the video must be manually transferred
and mapped to the game timeline.

As the above examples show, there exist several tools for
soccer analysis, i.e., both with respect to for example per-
formance (real-time), algorithms and features. However, to
the best of our knowledge, there does not exist a system that
fully integrates all these features. In this paper, we there-
fore present Bagadus [24], which integrates a camera array
video capture system with the ZXY Sport Tracking system
for player statistics and a system for human expert annota-
tions. Bagadus allows the game analytics to automatically

48

Camera switching - view

Panorama - view

synchronized

camera array

sensors

expert

annotations

antenna

antenna

antenna

antenna

panorama pipeline

single camera pipeline video

system

analytics system

onized

sensor system user interaction and retrieval

Figure 1: Overall Bagadus architecture.

playout a tagged game event or extract a video of events
extracted from the statistical player data, for example all
sprints at a given speed. Using the exact player position
provided by sensors, a trainer can also follow individuals
or groups of players, where the videos are presented either
using a stitched panorama view or by switching cameras.
Our prototype is deployed at Alfheim Stadium (Tromsø IL,
Norway), and we use a dataset captured at a Norwegian pre-
mier league game to demonstrate our system. Furthermore,
we also evaluate the system from a systems point of view;
benchmarking different approaches, algorithms and trade-
offs. In summary, our so far unoptimized prototype sup-
ports all operations in real-time, except stitching of 4 HD
cameras. However, as we discuss in the paper, a large po-
tential for improved speed lies in more efficient algorithms,
parallel processing and offloading to co-processing units like
GPUs.

The remainder of the paper is structured as follows: Next,
in section 2, we give a brief overview of the basic idea of
Bagadus and introduce the main subsystems. Then, we look
at the video-, tracking- and analysis-subsystems in more de-
tail in sections 3, 4 and 5, respectively. Then, we briefly
explain the case study at Alfheim stadium in section 6. Sec-
tion 7 provides a brief discussion of various aspect of the
system before we conclude the paper in section 8.

2. Bagadus – THE BASIC IDEA
The interest in sports analysis systems has recently in-

creased a lot, and as described above, several systems exist,
some for a long time already. However, they still require a

large portion of manual work to integrate information from
various computer systems and expert sport analytics. In
this respect, Bagadus1 is a prototype that aims to fully in-
tegrate existing systems and enable real-time presentation
of sport events. Our system is built in cooperation with the
Tromsø IL soccer club and the ZXY sport tracking company
for soccer analysis. A brief overview of the architecture and
interaction of the different components is given in figure 1.
The Bagadus system is divided into three different subsys-
tems, which are integrated in our soccer analysis application.

The video subsystem consists of multiple small shutter-
synchronized cameras that record a high resolution video of
the soccer field. They cover the full field with sufficient over-
lap to identify common features necessary for camera cali-
bration and image stitching. Furthermore, the video subsys-
tem supports two different playback modes. The first allows
playback of video that switches between streams delivered
from the different the cameras, either manually selecting a
camera or automatically following players based on sensor
information. The second mode plays back a panorama video
stitched from the different camera feeds. The cameras are
calibrated in their fixed position, and the captured videos are
each processed and stored using a capture–debarrel–rotate–
stitch–encode–store pipeline. In both these modes, Bagadus
allows a user to zoom in on and mark player(s) in the re-
trieved video (see figure 1).

To identify and follow players on the field, we use a track-
ing (sensor) subsystem. In this respect, tracking people

1The Sami word Bagadus translates to instruction, supervi-
sion or guidance.

49

through camera arrays has been an active research topic for
several years. The accuracy of such systems has improved
greatly, but there are still errors. Therefore, for stadium
sports, an interesting approach is to use sensors on players to
capture the exact position. In this area, ZXY Sport Track-
ing [7] provides such a sensor-based solution that provides
player position information. Bagadus uses this position in-
formation to track players, or groups of players, in single
camera views, stitched views or zoomed-in modes.

The third component of Bagadus is an analytics subsys-
tem. Coaches have for a long time analyzed games in order
to improve their own team’s game play and to understand
their opponents. Traditionally, this has been done by mak-
ing notes using pen and paper, either during the game or by
watching hours of video. Some clubs even hire one person
per player to describe the player’s performance. To reduce
the manual labor, we have implemented a subsystem that
equips members of the trainer team with a tablet (or even
a mobile phone), where they can register predefined events
quickly with the press of a button or provide textual anno-
tations. In Bagadus, the registered events are stored in an
analytics database, and can later be extracted automatically
and shown along with a video of the event.

The Bagadus application implements and integrates many
well-known components to support a particular application
scenario, i.e., arena sports analytics. However, the combi-
nation of different technologies raises requirements on both
spatial and temporal synchronization of multiple signals from
independent sources. The main novelty of our approach
is then the combination and integration of components en-
abling automatic presentation of video events based on the
sensor and analytics data that are synchronized with the
video system. This gives a threefold contribution: 1) a
method for spatially mapping the different coordinate sys-
tems of location (sensor) data and video images to allow for
seamless integration, 2) a method to record and synchronize
the signals temporally to enable semantic extraction capa-
bilities, and 3) the integration of the entire system into an
interactive application that can be used online and offline.

Thus, Bagadus will for example be able to automatically
present a video clip of all the situations where a given player
runs faster than 10 meters per second or when all the de-
fenders were located in the opponent’s 18-yard box (penalty
box). Furthermore, we can follow single players and groups
of players in the video, and retrieve and playout the events
annotated by expert users. Thus, where people earlier used
a huge amount of time for analyzing the game manually,
Bagadus is an integrated system where the required oper-
ations and the synchronization with video is automatically
managed.

3. VIDEO SUBSYSTEM
To record high resolution video of the entire soccer field,

we have installed a camera array using small industry cam-
eras which together cover the entire field. The video sub-
system then extracts and delivers video events based on
given time-intervals, player positions, etc. The video sub-
system supports two different playback modes. The first al-
lows playing video from individual cameras where the view
switches automatically between the cameras, i.e., manually
selecting a camera or automatically following players. For
this mode, the video data from each camera is stored and en-
coded separately. The second mode plays back a panorama

video stitched from the 4 camera feeds. The cameras are cal-
ibrated in their fixed position, and the captured videos are
each processed in a capture-debarrel-rotate-stitch-encode-
store pipeline.

3.1 Camera setup
To record high resolution video of the entire soccer field,

we have installed a camera array consisting of 4 Basler in-
dustry cameras with a 1/3-inch image sensor supporting 30
fps and a resolution of 1280×960. The cameras are syn-
chronized by an external trigger signal in order to enable a
video stitching process that produces a panorama video pic-
ture. For a minimal installation, the cameras are mounted
close to the middle line under the roof covering the spectator
area, i.e., approximately 10 meters from the side line and 10
meters above the ground. With a 3.5 mm wide-angle lens,
each camera covers a field-of-view of about 68 degrees, i.e.,
all four cover the full field with sufficient overlap to iden-
tify common features necessary for camera calibration and
stitching (see figure 2).

Figure 2: Camera setup at Alfheim stadium.

The cameras are managed using our own library, called
Northlight, to manage frame synchronization, storage, en-
coding, etc. The system is currently running on computers
with an Intel Core i7-2600 @ 3.4 GHz and 8 GB memory.
Northlight integrates the SDK provided by Basler for the
cameras, video encoding using x264, color-space conversion
using FFmpeg, JPEG-compression using Open-JPEG and
computer vision algorithms using OpenCV. Additionally, a
time synchronization protocol is currently under develop-
ment to easier give the stored frames the same time stamp
between multiple machines.

3.2 Digital zoom
Bagadus supports digital zooming on tracked players, i.e.,

keeping the tracked player in the center of the image while
zooming in. In this respect, an important operation is image
interpolation which uses known data to estimate values at
unknown points. In our context where we crop the image,
it is for example required to re-size or remap (distort) the
image from one pixel grid to another, i.e., to increase or
decrease the total number of pixels.

As for the rest of our processing pipeline, we need a real-
time operation, and we have compared 4 different interpo-
lation algorithms, listed with increasing complexity: near-
est neighbor, bilinear, bicubic and Lanczos interpolation.
In image processing, bicubic interpolation is often chosen
over bilinear interpolation or nearest neighbor in image re-
sampling, when speed is not an issue. In contrast to bilinear
interpolation, which only takes 4 pixels (2x2) into account,
bicubic interpolation considers 16 pixels (4x4). Images re-

50

Algorithm Min Max Mean
Nearest neighbor 4.1 5.1 4.2
Bilinear 7.4 7.8 7.4
Bicubic 47.9 55.3 48.3
Lanczos 240.1 245.4 240.7

Table 1: A speed comparison (ms per frame) be-
tween different interpolation algorithms in OpenCV
when remapping 300 frames.

sampled with bicubic interpolation are smoother and have
fewer interpolation artifacts. Lanczos interpolation has the
advantages of bicubic interpolation and is known to pro-
duce sharper results than bicubic interpolation. However,
we need to process the frames in real-time, and in this re-
spect, only the nearest neighbor and bilinear solutions can
be used in order to achieve the target frame rate (see ta-
ble 1). Our demo, however, is offline so here we have used
the Lanczos interpolation method (see also discussion below
comparing two different stitching pipelines).

3.3 Stitching
Tracking game events over multiple cameras is a nice fea-

ture, but in may situations, it may be desirable to have a
complete view of the field. In addition to the camera selec-
tion functionality, we therefore generate a panorama picture
by combining images from multiple, trigger-synchronized
cameras.

As seen in figure 1, the cameras are calibrated in their
fixed position using a classical chessboard pattern [32], and
the stitching operation requires a more complex processing
pipeline. We have alternative implementations with respect
to what is stored and processed offline, but in general, we
must 1) correct the images for lens distortion in the outer
parts of the frame due to a fish-eye lens; 2) rotate and morph
the images into the panorama perspective due to different
positions covering different areas of the field; 3) correct the
image brightness due to light differences; and 4) stitch the
video images into a panorama image. A simple illustration
is given in figure 3 where the processing of a single image is
shown and how the overlapping areas are used to generate
a panorama image. For the first steps, like debarreling, we
again move pixels according to a mathematical model, i.e.,
resulting in an interpolation overhead given in table 1. The
distortion parameters for debarreling are computed during
the calibration phase.

After the initial steps, the overlapping areas between the
frames are used to stitch the 4 videos into a panorama
picture before storing it to disk. We first tried the open
source solutions given by computer vision library OpenCV
which are based on the automatic panoramic image stitcher
by Brown et al. [10], i.e., we used the auto-stitcher func-
tions using planar-, cylindrical- and spherical projections.
Examples of the respective panorama images are given in
figures 4(a), 4(b) and 4(c), respectively, and the resulting
panorama image resolution2 and per image execution time
are given in table 2. As we can see from the figures and the
table, neither of the OpenCV implementations are perfect.

2Note that many of the panorama resolutions are larger than
what the 4 cameras deliver individually due to the warping,
changing perspective, rotation and stretching of the original
images.

(a) Debarreled left image. (b) Warped left image.

(c) Debarreled, warped and padded left image.

(d) Each of the 4 cameras, warped and padded to a horizontal
line (the view of the second camera). It shows these 4 view su-
perimposed on each other. The highlighted areas show where
the views overlap.

Figure 3: Processing the images for stitching.

Image Execution time
Algorithm resolution (ms per image)
OpenCV Planar projection 12040x3051 14103
OpenCV Cylindrical projection 9275x1803 4900
OpenCV Spherical projection 2371x1803 1746
Homography stitch 7000x960 974

Table 2: Stitching characteristics.

They all have an execution time longer than the deadline
for real-time stitching, and the fastest (spherical) still has
severe barreling effects.

To see if we could find a better and faster way to stitch
the images, we investigated if we could use a homography
given by the projective geometry translating ZXY’s coordi-
nate system to pixel coordinates. This approach includes
a more manual (but the camera mounting is static) image
registration step, using the properties of the pinhole camera
model and the homography relationship between planes.

The first step is to find corresponding pixel points in or-
der to compute the homography between the two planes [14].

51

(a) OpenCV’s auto-stitcher: Planar projection.

(b) OpenCV’s auto-stitcher: Cylindrical projection.

(c) OpenCV’s auto-stitcher: Spherical projection.

(d) Homography stitch.

Figure 4: Stitching comparison.

When the homography is calculated, the image can be warped
in order to fit the plane of the second image. The images
must be padded to have the same size, and the seams for
the stitching must be found in the overlapping regions. An
example of the resulting image is found in figure 4(d). Com-
pared to the other tested approaches, the image is at least as
good, and the processing time is greatly reduced. Currently,
the panorama pipeline is still non-real-time, but we are cur-
rently working on optimizing, parallelizing and offloading
operations to multiple cores and GPUs.

3.4 Performance and resource consumption
Handling video is in general expensive in terms of resource

consumption. The video is delivered from the cameras to
the machines for storage in real-time with a negligible delay.
However, there are many optimization trade-offs between
the scarce resources. In this section, we try to illuminate
some of these trade-offs and show the performance of the
current prototype.

3.4.1 Storage

Four HD cameras produce a lot of data for each game,
and additionally, the four camera feeds can be stitched to-

gether different ways giving potentially very large images
(see table 2). In this respect, there is a tradeoff between
processing and storage. Storing each video uncompressed
(YUV directly from the cameras) consumes large amount of
disk space (though it is cheap), and it consumes much disk-
and network bandwidth, but on the other hand, the system
can process the video in the stitching operations directly. To
save storage space and bandwidth, we may store the videos
compressed (lossless H.264) at the cost of a higher process-
ing cost encoding the data to YUV format for pixel ma-
nipulation and frame extraction. In the current prototype,
the video data is stored in segments of 90-frame group-of-
pictures (GOPs), i.e., 3-second segments of video, as sepa-
rate files to ease access and distribution over machines. Ta-
ble 3 shows an experiment (using standard desktop SATA
hard-disks) where we tested different options. The table
includes statistics of the storage requirement per 90-frame
GOP and the corresponding I/O requirement, the time to
retrieve the first frame in the GOP from the disk so that it is
ready for further processing (we do not need to wait for the
entire GOP before starting to encode) and the total time
to read and encode the entire GOP. The times are mea-
sured reading an entire game from an otherwise idle disk,
but variations occur due to placements on the disk platters
etc. Thus, the numbers are meant as indicators, not exact
numbers, and better performance can also be achieved using
better high-end disks.

In camera switching mode, we select frames from the four
individual cameras directly without any other image pro-
cessing. The first rows in table 3 show the tradeoff between
YUV storage versus H.264 storage reading data from a local
disk or from a remote disk over a gigabit local network. Ob-
viously, there is a large difference between storing the data in
YUV and H.264 encoding. The YUV format requires more
than twice the storage and bandwidth and it has a faster
startup time compared to H.2643. If data is stored locally,
both options are able to deliver data in time for real-time
playout, i.e., the 90-frame GOPs (3 seconds of video data)
are read (and encoded) in less than 3 seconds. If we need to
read from a remote disk, we need to store data compressed
using H.264 to achieve real-time retrieval from the disk.

When the system is in panorama mode, it requires a lot
more data. Using the stored stitch-images in table 3, we
assume the stitching pipeline presented below is performed
off-line. Taking the full stitch as an example, we save more
than four times the storage space and bandwidth if we com-
press the data using H.264. Again, we observe that the data
can be displayed earlier reading uncompressed YUV data,
but in this case, we cannot read data fast enough to support
real-time delivery, i.e., reading a 90-frame GOP below 3 sec-
onds. In the case of using H.264, we can on average read
data fast enough to support real-time delivery, even using
the standard disks we used.

3.4.2 Stitching Processing pipeline

Depending on the type of operation, we have defined two
different stitching processing pipelines. The first is meant
for offline stitching where we store the stitched images back
to disk, and the second is meant for live stitching reading
directly from the camera feeds. The point is that performing

3H.264 can achieve a much better compression, but for the
current prototype, we used lossless mode for later pixel ma-
nipulation with the goal of reading video data in real-time.

52

Camera mode Data Storage Storage space Bandwidth Read and encode
location format (MB) (Mbps) first frame (ms) GOP (ms)

mean max mean max mean max mean max
Single camera local disk H.264 76.72 80.93 204.60 215.81 242.0 804.2 1236.4 3041.5

YUV 165.89 — 442.37 — 24.9 348.5 1600.8 3386.0
remote disk H.264 76.72 80.93 204.60 215.81 376.8 993.6 1850.5 3451.7

YUV 165.89 — 442.37 — 92.2 386.3 3235.9 5138.5

2-camera stitch local disk H.264 69.94 73.29 186.51 195.83 509.2 691.4 1508.7 2084.4
YUV 279.94 — 776.50 — 35.0 396.1 2177.1 4017.8

remote disk H.264 69.94 73.29 186.51 195.83 560.4 970.5 1707.0 2215.7
YUV 279.94 — 776.50 — 235.1 727.0 3701.3 3386.0

4-camera stitch local disk H.264 179.69 183.23 479.18 488.81 441.0 555.7 2150.2 3398.5
YUV 910.98 — 2429.28 — 120.2 533.5 8150.9 12825.9

remote disk H.264 179.69 183.23 479.18 488.81 601.8 993.0 2872.4 3828.6
YUV 910.98 — 2429.28 — 281.3 434.3 13396.4 20310.4

Table 3: Storage, I/O and processing tradeoffs per 90-frame, 3-second GOP (segment):
compressed (H.264) vs. uncompressed (YUV) and local vs. remote disk performance.

these steps offline, we can focus on quality, and in this case,
we have used Lanczos interpolation (see table 1) as part
of the debarreling and stitching steps. For live stitching,
we have used the nearest neighbor interpolation due to the
speed.

Table 4 contains the processing times from the two differ-
ent homography stitching pipelines over 100 stitches from
the 4 cameras, i.e., using the nearest neighbor or Lanczos
interpolation. The experiment uses the same stored data
in both tests. This adds a disk read (not included in ta-
ble 4, see table 3 for 90 frame measurements) and a disk
write. The pipeline in the used system will only have a
write in the offline mode (and a read later when the data is
accessed), i.e., in a live scenario, there are no reads or writes
to disk. Note also that our implementations of the stitching
algorithms work on RGB data rather than the YUV data
requiring a convertion. This is due to our initial work on
OpenCV and will be removed in future improvements of the
stitching algorithm.

Note that only the image manipulation steps (debarrel
and stitch) differ significantly, and the others are merely
variations over different runs. These steps are also where we
are currently investigating alternatives as described later in
section 7. The other steps are on average performed below
the real-time threshold given by the 30 fps boundary. The
total time is therefore just an indication of how long delay
we have per image in a live stream (if we manage to get
debarreling and stitching in real-time too).

3.4.3 Real-Time Capabilities

Bagadus successfully shows that an integration of sub-
systems is possible to make an automatic system with the
required functionality. However, our benchmarking of the
system shows that parts of the non-optimized pipeline are
non-real-time in order to support a 30 fps video playout in
panorama mode, i.e., table 4 reports stitching performance
in the area of 1 fps whereas the rest can be processed in
more than 30 fps. However, the stitching operation can be
parallelized and offloaded, and if this operation is performed
offline and stored, the results from table 3 indicate that 90-
frame GOPs encoded in H.264 can be read in less than 3
seconds. Thus, real-time retrieval of the panorama video is
supported by the current system.

Convert

YUV to RGB

Nearest Lanczos

Mean 4.9 5.1
Maxmimum 12.0 12.3
Minimum 4.7 4.7

⇓

Debarrel Nearest Lanczos
Mean 17.1 986.9
Maxmimum 21.1 1053.3
Minimum 16.8 965.6

⇓

Stitch Nearest Lanczos
Mean 974.4 2773.1
Maxmimum 1041.0 3027.7
Minimum 963.4 2712.7

⇓

Convert stitch

RGB to YUV

Nearest Lanczos

Mean 28.0 28.6
Maxmimum 34.8 36.3
Minimum 27.7 27.7

⇓

Write Nearest Lanczos
Mean 84.3 11.3
Maxmimum 3360.5 386.4
Minimum 3.8 3.8

Total Nearest Lanczos
Mean 1109.0 3806.3
Maxmimum 4374.1 4298.0
Minimum 1017.7 3716.0

Table 4: Profiling of the stitching pipelines: image
quality vs. processing speed (in ms per frame).

53

4. TRACKING SUBSYSTEM
Tracking people through camera arrays has been an ac-

tive research topic for several years, and many approaches
have been suggested (e.g., [8, 9, 16, 30]). The accuracy of
such tracking solutions vary according to scenarios and is
continuously improving, but they are still giving errors, i.e.,
both missed detections and false positives [8].

For stadium sports, an interesting approach is to use sen-
sors on players to capture the exact position. ZXY Sport
Tracking [7] provides such a solution where a sensor system
submits position and orientation information at a maximum
accuracy error of about one meter at a frequency of 20 Hz.
As indicated in figure 1, the players wear a data-chip with
sensors that sends signals to antennas located around the
perimeter of the pitch. The sensor data is then stored in
a relational database system. Based on these sensor data,
statistics like total length ran, number of sprints of a given
speed, foot frequency, heart rate, etc. can be queried for,
in addition, to the exact position of all players at all times.
Due to the availability of the ZXY system at our case study
stadium, Bagadus uses the sensor system position informa-
tion to extract videos of for example particular players, and
the rest of the system can be used to extract time intervals
of the video (e.g., all time intervals where player X sprints
towards his own goal).

Although the amount of data generated by the position
sensors is small compared to video, a game of 90 minutes still
produces approximately 2.4 million records. Nevertheless, as
we show later in section 6, we still have reasonable response
times from sending the a complex database query until the
video starts to play the corresponding query result events.

4.1 Mapping sensor positions to image pixels
The ZXY system reports the players’ positions on the field

using the Cartesian coordinate system. In order to locate a
player in the video, we need a translation from the sensor
coordinates to the image pixels for all valid pixel coordinates
in a video frame. In this respect, we calculate a 3x3 trans-
formation matrix using fixed, known points on the field as
shown in figure 5(a). Then, using the homography between
two planes, each plane can be warped to fit the other as
shown in figures 5(b) and 5(c) using camera 2 as an exam-
ple. The accuracy of the mapping is fairly good, i.e., only in
the outer areas of the image where debarreling have changed
some pixels we see a very small deviation between the planes.
However, if we look at the mapping to the stitched image
in figure 5(d), the accuracy is reduced due to imperfections
in the image processing when debarreling and in particular
when warping and rotating. Nevertheless, at the distance
between the cameras and the players, the accuracy seems
to be good enough for our purposes (though inaccuracies in
the mapping might also contribute to inaccurate tracking as
shown later in figure 10).

In order to have a system where the players are tracked
in real-time, the ZXY (x, y) → pixel(u, v) mapping using
the 3x3 matrix must be fast. A profile of the system when
tracking all 22 soccer players indicate that about 7.2 – 7.7
microseconds are consumed for this operation, i.e., coordi-
nate translation is hardly noticeable compared to the other
components in the system.

4.2 Automatic camera selection
As shown in figure 2, the 4 cameras cover different parts

(a) Mapping between coordinates in the ZXY
plane and the image plane.

(b) Warping and superimposing the image from
camera 2 to the ZXY plane.

(c) Warping and superimposing the ZXY plane
onto the image from camera 2.

(d) Warping and superimposing the ZXY plane
onto the stitched image (cropped out only parts
of the field for readability).

Figure 5: Pixel mapping between the video images
and the ZXY tracking system.

of the field. To follow a player (or group of players) and
be able to automatically generate a video selecting images
across multiple cameras, we also need to map player posi-
tions to the view of the cameras. In this respect, we use

54

(a) Event tagging. (b) Select player. (c) Drag to event.

Figure 6: Operation of the mobile device during a game (a). Select a player (b) and drag the image tile to
the appropriate event type (c) to register an event.

the same mapping as described in section 4.1 using our own
transformation matrix for each camera. Selecting a camera
is then only a matter of checking if the position of the player
is within the boundaries of the image pixels. When track-
ing multiple players, we use the same routine and count the
number of tracked players present in each camera and select
the camera with the most tracked players.

5. ANALYTICS SUBSYSTEM
To improve a team’s performance and understand their

opponents, coaches analyze the game play in various ways.
Traditionally, this has been done by making notes using pen
and paper, either during the game or by watching hours
of video. To reduce the manual labor, we have developed
Muithu, a novel notational analysis system [19] that is non-
invasive for the users, mobile and light-weight. A cellular
phone is used by head coaches during practice or games for
annotating important performance events. A coach usually
carries a cellular, even during practice. Thus, to avoid any
extra coach device, the cellular is used in the notational pro-
cess as notational device. A Windows Phone 7.5 tiles based
interface (see figure 6(b) and 6(c)) provides input, and fig-
ure 6(a) illustrates use of the system by a coach during a
recent game in the Norwegian elite division. Our experience
indicates that this simple drag and drop user-interaction re-
quires in the order of 3 seconds per notational input. Fig-
ure 7 depicts the number of notational events captured dur-
ing the first 9 games in the 2012 season at Alfheim. The
average number of input notations for a regular 90 minute
elite soccer game is in the order of 16 events.

In order to be usable during a game, the user interface
of Muithu has to be easy-to-use and fast. It is therefore
based on managing tiles in a drag-and-drop fashion, and it
can be easily configured with input tiles and hierarchies of
tiles. In the case study described in section 6, one preferred
configuration pattern for general practice is to have a two-
layer hierarchy, where the root node is a number or all of the
players involved. The next layer is a set of 3-4 training goals
associated with each individual player. By simply touching
the picture of a player on a tile, his specific training goals

!

"

#!

#"

$!

$"

%!

$ % & " ' () *

Figure 7: Number of notational events captured
during the first 9 elite series games in 2012.

appear on adjacent tiles. Dragging the face tile over one of
these goal tiles is then sufficient for capturing the intended
notation.

For heated game purposes a simpler configuration is pre-
ferred, typically one tile for offensive and one for defensive
notations (see figure 6(b) and 6(c)). Using this interface
as an example, figure 8 depicts the distribution of such no-
tations during a home game in September 2012. Observe
that offensive notations are displayed above the time line,
defensive notations below.

!"!! !"#$!"%! !"&$ #"!! #"#$ #"%! #"&$ '"!!

()*)+,-.) /**)+,-.)

Figure 8: Notations captured in game number 9
from figure 7.

Recall of performance related events without any obser-
vation aids is traditionally problematic in soccer, but the re-
call abilities of the head coaches using Muithu has improved
rapidly approaching almost 1 (100%). A small, but funda-
mental detail is the use of hindsight recording, which implies
that the coach observes an entire situation and determines

55

afterwards whether it was a notable event worth capturing.
By tagging in retrospect, the coach essentially marks the end
of a notable event, and the system finds the start of the se-
quence by a pre-configured interval length. This simple, yet
not so intuitive approach has reduced the number of false
positives, that is, increased precision dramatically.

Only those events tagged by the head coaches are re-
trieved for movement patterns, strategy, and tactics eval-
uation. Key to this process is that the video footage is auto-
matically retrieved from the video system when the event is
selected in the video playout interface. This scales both tech-
nically and operationally, which enables expedite retrieval.
The video sequence interval according to the recorded event
time-stamp is a configuration option easy to change, but
operational practice has shown that an interval around 16
seconds is appropriate for capturing the event on video.

6. ALFHEIM STADIUM CASE STUDY
As mentioned above, we test our ideas using a case study

where we have an installation at Alfheim stadium in Tromsø
(Norway). The interface of the first prototype4 is shown in
figure 9, where we can follow and zoom in on particular
player(s), and play back expert-annotated events from the
game in panorama video and camera switching mode.

Additionally, the system has support for generating auto-
matic summaries, i.e., selecting multiple time intervals and
playing it out as one video (not yet integrated into the user
interface). This means that the game analytics for exam-
ple may perform queries against the ZXY database and get
the corresponding video events. An example could be to see
“all the events where defender X is in the other team’s 18-
yard box in the second half”. In this example, the position
and corresponding time of player X in the former example
is returned by the following pseudo-query:

SELECT timestamp, x_pos, y_pos

FROM zxy_oversample

WHERE (y_pos > 17.5 AND y_pos < 50.5)

AND (x_pos > 0.0 AND x_pos < 16.5)

AND timestamp > 45

AND tag_id = ("the tag_id of player X")

Here, the player is located within the [0.0, 16.5] in the x-
coordinate and [17.5, 50.5] on the y-axis (using the metric
system) defining the left 18-yard box. The returned time-
stamps and positions are then used to select video frames
(selecting correct camera or the panorama picture) which
are automatically presented to the user.

Extracting summaries like the example above used to be a
time consuming and cumbersome (manual) process. Bagadus,
on the other hand, automates the video generation. For in-
stance, the response time of returning the resulting video
summary from the query above was measured to be around
671 ms (see table 5 for more detailed statistics). Note that
this was measured on a local machine, i.e., if the display
device is remote, network latency must be added.

4A video of the Linux-based system is available at
http://www.youtube.com/watch?v=1zsgvjQkL1E. The sys-
tem has been extended since the creation of this video,
but due to time restrictions before the submission deadline,
it has not been updated, i.e., this video does not include
search. However, we already showed that we are able to
search in the DAVVI system [18].

Operation Mean Minimum Maximum
Query received 2.7 1.5 5.3
Query compiled 4.9 2.9 7.8
First DB row returned 500.4 482.4 532.1
First video frame displayed 671.2 648.0 794.6

Table 5: Latency profiling (in ms) of the event ex-
traction operation using ZXY and the video system.

In a similar way, we can also extract video events based
on expert annotations as shown in figure 9. All annotated
events from the analytics subsystem appear in the list of
events, and the corresponding video starts by clicking on
the title. Here, we get even lower response times as we do
not have to make a complex search to find the time intervals
as they are embedded in the event annotation itself.

7. DISCUSSION
Bagadus is a prototype of a soccer analysis application

which integrates a sensor system, soccer analytics annota-
tions and video processing of a video camera array. There
exist several components that can be used, and we have in-
vestigated several alternatives in our research. However, our
first prototype aims to prove the possible integration at the
system level, rather than being optimized for performance.

For example, most stitching processes assume the pinhole
camera model where there is no image distortion because of
lenses. In our work, we have observed that a camera can be
calibrated to minimize lens distortion caused by imperfec-
tions in a lens, but making a perfect calibration hard. This
makes finding a homography between planes difficult and
error-prone, which affects the stitched result. Another prob-
lem we have identified, are parallax errors. OpenCV’s auto-
stitcher has functionality for selecting seams at places where
parallax errors are less obvious. However, when stitching
video, players are bound to run through a seam and parallax
errors will become prominent. Such problems arise because
the centers of the projection of different cameras are not well
enough aligned. We are looking at solutions to eliminate this
problem, one of the most interesting solutions is the arrange-
ment of cameras similar to [12]. Furthermore, the stitching
itself can be moved from a homography based stitching to
more advanced warping techniques like mentioned in [22]. A
rather intriguing challenge would be to incorporate such a
process into Bagadus and perform it in real-time. Moreover,
we have later found several promising alternative algorithms
in the area of video processing (vision), e.g., [17,21–23], and
there is also scope for improvement in color correction [29],
since the exposure times and other parameters across the
cameras may vary. Furthermore, there are large potentials
for algorithm parallelization onto both multiple cores and
to external processing units like graphical processing units
(GPUs). This area is our primary subject of on-going work.

We have in this paper shown Bagadus in the context of
analyzing only one game. However, we have earlier shown
how one could search for events and on-the-fly generate video
summaries in terms of a video playlist [18] over large libraries
of video content. In the used test scenario, there are events
identified from multiple sub-components, e.g., the sensor
system and the annotation system. In many cases, it would
be valuable to be able to search across all the metadata, and
also across games. This is a feature we are currently adding,

56

Camera controls (manual, follow player, stitched) Zoom on tracked player(s)

Select player(s) to track
based on

tracking subsystem

Select annotated event
from the

analytic subsystem

Figure 9: An example run using the Linux interface (tracking three players in camera switching mode).

i.e., the underlying video system fully supports the video
extraction, but the interface has not yet been implemented.

The design of Bagadus having three tightly integrated, but
still separate subsystems, enables easy subsystem replace-
ment. For example, we have used ZXY to track players, giv-
ing some extra nice features (heart rate, impact, etc.). How-
ever, tracking players (or generally objects) through video
analysis is a popular research area, e.g., both in sports [12,
15, 20, 31] and surveillance [11, 13, 26]. Thus, the Bagadus-
idea should easily be transferable to arenas where the sen-
sor system is unavailable or to other arena sports, like ice
hockey, handball, baseball, tennis, American football, rugby,
etc. Similarly, video processing components can easily be re-
placed to match other codecs, other filters or to suit other
end-devices and platforms. Equally, the annotation system
can be replaced (or expanded) to retrieve metadata of events
from other sources, like on-the-fly live text commentaries
found in newspapers and online TV stations like we did in
our DAVVI system [18].

One engineering challenge in systems like Bagadus is time
synchronization at several levels. First, to be able to stitch
several images to a panorama image, the shutters must be
synchronized at sub-millisecond level, i.e., as the players
are moving fast across cameras, imperfect synchronization
would lead to massive pixel offsets across camera perspec-
tives resulting in severely blurred composite images of play-
ers. This is currently solved using an external trigger box
(embedded trigger controller based on an ATMega16 micro-
controller) which sends an input signal to the camera’s elec-
tronic shutter. Another observed challenge in this respect
is that the clock in the trigger box drifts slightly compared
to our computer clocks depending on temperature (which
changes a lot under the harsh outdoor conditions in north-
ern Norway). While the shutters across cameras remains in

sync, a drifting clock leads to slight variations in frame rate
of the captured video. Similarly, Bagadus integrates several
subsystems running on different systems. In this respect,
the clock in the ZXY system also slightly drifts compared to
the clock in our video capture machines (will be potentially
solved when we switch ZXY to the same NTP server). So
far, these small errors have been identified, but since we al-
leviate the problem in our video player by fetching a couple
of seconds more video data around a requested event times-
tamp, the effects have been small. Another more visible (still
very infrequent) effect of time skew is that the box-marker
marking the players(s) in the video gives small misplace-
ment errors as shown in figure 10. However, the bounding
box is slightly larger compared to the person-object itself.
This means that the player is usually contained in the box,
even though not exactly in the middle. At the current stage
of our prototype, we have not solved all the synchronization
aspects, but it is subject to ongoing work. We have for exam-
ple designed a time code protocol which reduce the effect of
clock drift in the trigger box by assigning each frame a time
stamp according to the clock in the video capture-machine.
This protocol is currently under development.

The ZXY’s tracking system installed at Alfheim stadium
has a maximum accuracy error of one meter (their new sys-
tem reduces this error down to a maximum of 10 centime-
ters). This means that if a player is at a given position,
the measured coordinate on the field could be ± one meter.
This could give effects like shown in figure 10, but for the
practical purposes of our case study, it has no influence on
the results.

The players are as described tracked using the ZXY Sport
Tracking system. Another issue which is not yet included in
Bagadus is ball tracking, i.e., a feature that will potentially
improve the analysis further. Even though ball tracking is

57

Figure 10: An example of when the tracking box
fails to capture the tracked player. Even though
our analysis of the system indicate very infrequent
errors, it may be various reasons for failed tracking,
e.g., both clock skew, sensor system accuracy and
coordinate mapping.

not officially approved by the international soccer associa-
tions due to the limited reliability and failure to provide a
100% accuracy, there exist several approaches. For exam-
ple, Adidas and Cairos Technologies have earlier tried to
put sensors inside the ball, i.e., using a magnetic field to
provide pinpoint accuracy of the ball’s location inside the
field [6, 27]. Other approaches include using multiple cam-
eras to track the ball. Hawk-Eye [2] is one example which
tries to visually track the trajectory of the ball and display a
record of its most statistically likely path as a moving image.
Nevertheless, ball tracking in Bagadus is a future feature to
be included.

This paper presents Bagadus in the context of sports anal-
ysis for a limited user group within a team. However, the
applicability we conjecture is outside the trainer and athlete
sphere, since we have a potential platform for next genera-
tion personalized edutainment. We consider use case scenar-
ios where users can subscribe to specific players, events and
physical proximities in real-time. For instance, when the
main activity is around the opponent goal, a specific target
player can be zoomed into. Combine this with commonplace
social networking services, and we might have a compelling
next generation social networking experience in real-time.

8. CONCLUSIONS
In this paper, we have presented a prototype of a sports

analysis system called Bagadus targeting automatic process-
ing and retrieval of events in a sports arena. Using soc-
cer as a case study, we described how Bagadus integrates
a sensor system, a soccer analytics annotations system and
a camera array video processing system. Then, we showed
how the system removes the large amount of manual labor
traditionally required by such systems. We have described
the different subsystems and the possible trade-offs in or-
der to run the system in real-time mode. The performance
of most of the system enables real-time operations, except
the non-optimized, sequential stitching operation. However,
by performing the stitching offline, real-time retrieval and
playout are supported at the cost of a higher storage re-

quirement. Furthermore, we have presented functional re-
sults using a prototype installation at Alfheim Stadium in
Norway. Bagadus enables a user to follow and zoom in on
particular player(s), playout events from the games using
the stitched panorama video and/or the camera switching
mode and create video summaries based on queries to the
sensor system.

Finally, there are several areas for future improvements,
e.g., in the areas of image quality improvements, perfor-
mance enhancements and subjective user evaluations. All
these areas are subjects for ongoing work, e.g., we are test-
ing algorithms discussed in section 7 for improving the im-
age quality, and we are parallelizing algorithms onto mul-
tiple cores and offloading calculations to GPUs for speed
improvements.

Acknowledgements

This work has been performed in the context of the iAD cen-
tre for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council. Furthermore,
the authors also acknowledge the support given by Marius
Tennøe, Henrik Kjus Alstad, Espen Helgedagsrud, Mikkel
Næss (students at the University of Oslo) and Roger B.A.
Hansen (student at the University of Tromsø). Kai-Even
Nilssen has been extremely helpful with the practical in-
stallation at Alfheim, and the coaches in TIL (Per-Mathias
Høgmo and Agnar Christensen) have given feedback on the
functionality of the system.

9. REFERENCES
[1] Camargus - Premium Stadium Video Technology

Inrastructure. http://www.camargus.com/.

[2] Hawk-Eye.
http://www.hawkeyeinnovations.co.uk/page/sports-
officiating/football.

[3] Interplay sports. http://www.interplay-sports.com/.

[4] Prozone. http://www.prozonesports.com/.

[5] Stats Technology.
http://www.sportvu.com/football.asp.

[6] The adidas intelligent football.
http://www.gizmag.com/adidas-intelligent-
football/8512/.

[7] ZXY Sport Tracking. http://www.zxy.no/.

[8] Horesh Ben Shitrit, Jerome Berclaz, Francois Fleuret,
and Pascal Fua. Tracking multiple people under global
appearance constraints. In Proceedings of the IEEE
International Conference on Computer Vision
(ICCV), pages 137–144, November 2011.

[9] Jerome Berclaz, Francois Fleuret, Engin Turetken,
and Pascal Fua. Multiple object tracking using
k-shortest paths optimization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(9):1806
–1819, 2011.

[10] Matthew Brown and David G. Lowe. Automatic
panoramic image stitching using invariant features.
International Journal of Computer Vision,
74(1):59–73, August 2007.

[11] Chao-Ho Chen, Tsong-Yi Chen, Je-Ching Lin, and
Da-Jinn Wang. People tracking in the multi-camera
surveillance system. In Proceedings of International
Conference on Innovations in Bio-inspired Computing
and Applications (IBICA), pages 1 –4, December 2011.

58

[12] Christoph Fehn, Christian Weissig, Ingo Feldmann,
Markus Muller, Peter Eisert, Peter Kauff, and Hans
Bloss. Creation of high-resolution video panoramas of
sport events. In Proceedings of the IEEE International
Symposium on Multimedia (ISM), pages 291 –298,
December 2006.

[13] Luis M. Fuentes and Sergio A. Velastin. People
tracking in surveillance applications. Image and
Vision Computing, 24(11):1165 – 1171, 2006.

[14] R. I. Hartley and A. Zisserman. Multiple View
Geometry in Computer Vision. Cambridge University
Press, second edition, 2004.

[15] Sachiko Iwase and Hideo Saito. Parallel tracking of all
soccer players by integrating detected positions in
multiple view images. In Proceedings of the
International Conference on Pattern Recognition
(ICPR), pages 751 – 754, August 2004.

[16] Hao Jiang, Sidney Fels, and James J. Little. A linear
programming approach for multiple object tracking. In
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2007.

[17] Hailin Jin. A three-point minimal solution for
panoramic stitching with lens distortion. In Proceeding
of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–8, June 2008.

[18] Dag Johansen, H̊avard Johansen, Tjalve Aarflot,

Joseph Hurley, Åge Kvalnes, Cathal Gurrin, Sorin
Sav, Bjørn Olstad, Erik Aaberg, Tore Endestad,
Haakon Riiser, Carsten Griwodz, and P̊al Halvorsen.
DAVVI: A prototype for the next generation
multimedia entertainment platform. In Proceedings of
the ACM Multimedia conference (ACM MM), pages
989–990, October 2009.

[19] Dag Johansen, Magnus Stenhaug, Roger Bruun Asp
Hansen, Agnar Christensen, and Per-Mathias Høgmo.
Muithu: Smaller footprint, potentially larger imprint.
In Proceedings of the IEEE International Conference
on Digital Information Management (ICDIM), pages
205–214, August 2012.

[20] Jinman Kang, Isaac Cohen, and Gerard Medioni.
Soccer player tracking across uncalibrated camera
streams. In Proceedings of the Joint IEEE
International Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance
(VS-PETS), pages 172–179, 2003.

[21] Jubiao Li and Junping Du. Study on panoramic image
stitching algorithm. In Proceedings of the Pacific-Asia
Conference on Circuits, Communications and System
(PACCS), pages 417–420, August 2010.

[22] Wen-Yan Lin, Siying Liu, Y. Matsushita, Tian-Tsong
Ng, and Loong-Fah Cheong. Smoothly varying affine
stitching. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 345–352, 2011.

[23] Tomohiro Ozawa, Kris M. Kitani, and Hideki Koike.
Human-centric panoramic imaging stitching. In
Proceedings of the Augmented Human International
Conference (AH), pages 20:1–20:6, 2012.

[24] Simen Sægrov, Alexander Eichhorn, Jørgen
Emerslund, H̊akon Kvale Stensland, Carsten Griwodz,
Dag Johansen, and P̊al Halvorsen. Bagadus: An
integrated system for soccer analysis (demo). In

Proceedings of the International Conference on
Distributed Smart Cameras (ICDSC), October 2012.

[25] Valter Di Salvo, Adam Collins, Barry McNeill, and
Marco Cardinale. Validation of Prozone: A new
video-based performance analysis system.
International Journal of Performance Analysis in
Sport (serial online), 6(1):108–119, June 2006.

[26] Nils T. Siebel and Stephen J. Maybank. Fusion of
multiple tracking algorithms for robust people
tracking. In Proceedings of the European Conference
on Computer Vision-Part IV (ECCV), pages 373–387,
2002.

[27] Cairos technologies. Goal Line Technology (GLT)
system.
http://www.cairos.com/unternehmen/gltsystem.php.

[28] Cairos technologies. VIS.TRACK.
http://www.cairos.com/unternehmen/vistrack.php.

[29] Yingen Xiong and Kari Pulli. Fast panorama stitching
for high-quality panoramic images on mobile phones.
IEEE Transactions on Consumer Electronics, 56(2),
May 2010.

[30] Ming Xu, James Orwell, and Graetne Jones. Tracking
football players with multiple cameras. In Proceedings
of the International Conference on Image Processing
(ICIP), pages 2909–2912, October 2004.

[31] Sunghoon Choi Yongduek, Sunghoon Choi, Yongduek
Seo, Hyunwoo Kim, and Ki sang Hong. Where are the
ball and players? Soccer game analysis with
color-based tracking and image mosaick. In
Proceedings of the International Conference on Image
Analysis and Processing (ICIAP), pages 196–203,
1997.

[32] Zhengyou Zhang. Flexible camera calibration by
viewing a plane from unknown orientations. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 666 –673, 1999.

59

